Matemática, perguntado por samarasilvarocha, 1 ano atrás

Calcular a derivada dy/dx
y=raiz de u ; u=x^2+2x-3.
Conta detalhada por favor.
resposta dy/dx=x+1/raiz de x^2+2x-3

Soluções para a tarefa

Respondido por ScreenBlack
1


f_{(x)}=y=\sqrt{u}\\\\
f_{(x)}=\sqrt{x^2+2x-3}\\\\
f_{(x)}=(x^2+2x-3)^{\frac{1}{2}}\\\\\\
Derivada:\\\\
\frac{dy}{dx}=f'_{(x)}\\\\\\
Derivando\ pela\ regra\ da\ cadeia\\\\ 
Derivada\ de\ fora\ vezes\ a\ derivada\ de\ dentro:\\\\ 
f'_{(x)}=((x^2+2x^1-3)^{\frac{1}{2}})'\times(x^2+2x^1-3)'}\\\\ 
f'_{(x)}=\frac{1}{2}(x^2+2x^1-3)^{(\frac{1}{2}-1)}\times(2x^{(2-1)}+2.1.x^{(1-1)}-0)}\\\\ f'_{(x)}=\frac{1}{2}(x^2+2x^1-3)^{-\frac{1}{2}}\times(2x^{1}+2.1.x^{0})}

f'_{(x)}=\frac{1}{2}\frac{1}{(x^2+2x^1-3)^{\frac{1}{2}}}\times(2x+2.1.1)}\\\\ f'_{(x)}=\frac{1}{2\sqrt{x^2+2x^1-3}}\times(2x+2)}\\\\ f'_{(x)}=\frac{(2x+2)}{2\sqrt{x^2+2x^1-3}}}\\\\ f'_{(x)}=\frac{2(x+1)}{2\sqrt{x^2+2x^1-3}}}\\\\ f'_{(x)}=\frac{\not2(x+1)}{\not2\sqrt{x^2+2x^1-3}}}\\\\ \boxed{f'_{(x)}=\frac{x+1}{\sqrt{x^2+2x^1-3}}}}

Bons estudos!


samarasilvarocha: muitissimo obrigada
Perguntas interessantes