Matemática, perguntado por Usuário anônimo, 10 meses atrás

Avalie a integral \displaystyle\mathsf{\int arctg(\sqrt{x})~dx}

Soluções para a tarefa

Respondido por CyberKirito
3

Integral por Partes

 \large \boxed{\boxed{\boxed{\boxed{\displaystyle\mathsf{\int u\cdot dv=u\cdot v-\int v\cdot du}}}}}

\dotfill

\displaystyle\mathsf{\int arctg(\sqrt{x})~dx}

faça

\mathsf{t=\sqrt{x}\implies~x=t^2}\\\mathsf{dx=2t~dt}

\displaystyle\mathsf{\int arctg(\sqrt{x})~dx=\int arctg(t) 2t~dt}

faça

\mathsf{u=arctg(t)}\\\mathsf{du=\dfrac{dt}{1+t^2}}\\\mathsf{dv=2t~dt\implies v=t^2}

\displaystyle\mathsf{\int arctg(t) 2t~dt=arctg(t)\cdot t^2-\int \dfrac{t^2}{1+t^2}~dt}

\mathsf{\dfrac{t^2}{1+t^2}=1-\dfrac{1}{1+t^2}}

\displaystyle\mathsf{\int\dfrac{t^2}{1+t^2}~dt=\int dt-\int\dfrac{1}{1+t^2}~dt}\\\mathsf{=t-arctg(t)+c}

\displaystyle\mathsf{\int arctg(t) 2t~dt=arctg(t)\cdot t^2-[t-arctg(t)]+k}\\\displaystyle\mathsf{\int arctg(t)~dt=t^2arctg(t)-t+arctg(t)+k}

Daí

\displaystyle\mathsf{\int arctg(\sqrt{x})~dx} \\\mathsf{=x\cdot arctg(\sqrt{x})-\sqrt{x}+arctg(\sqrt{x})+k}

Respondido por Makaveli1996
0

Oie, Td Bom?!

\displaystyle\int \: arctan( \sqrt{x} ) \: dx

\displaystyle\int \: arctan( \sqrt{x} ) \: . \:  \frac{1}{ \frac{1}{2 \sqrt{x} } }  \: dt

\displaystyle\int \: arctan( \sqrt{x} ) \: . \: 2 \sqrt{x} \:  dt

\displaystyle\int \: 2arctan( \sqrt{x} ) \: . \:  \sqrt{x}  \: dt

  • Substitua  \sqrt{x}  = t.

\displaystyle\int \: arctan(t) \: . \: t \: dt

2 \: . \: \displaystyle\int \: arctan(t) \: . \: t \: dt

• Integrando por partes definindo:

  • (I) u.

u = arctan(t)

du =  \frac{1}{1 + t {}^{2} }  \:   dt

  • (II) dv.

dv = t \: dt

v =  \frac{t {}^{2} }{2}

• Substituindo u = arctan(t),

v =  \frac{t {}^{2} }{2} , du =  \frac{1}{1 + t {}^{2} }  \:  dt e dv = t \: dt em \displaystyle\int \: u \: dv = uv - \displaystyle\int \: v \: du .

• Continuando, então teremos:

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  - \displaystyle\int \:  \frac{t {}^{2} }{2}  \: . \:  \frac{1}{1 + t {}^{2} }  \: dt

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  - \displaystyle\int \:  \frac{t {}^{2} }{2(1 + t {}^{2}) }  \: dt

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  -  \frac{1}{2}  \: . \: \displaystyle\int \:  \frac{t {}^{2} }{1 + t {}^{2} }  \: dt)

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  -  \frac{1}{2}  \: . \: \displaystyle\int \:  \frac{t {}^{2}  + 1 - 1}{1 + t {}^{2} }  \: dt)

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}   -  \frac{1}{2}  \: . \: \displaystyle\int  \: \frac{t {}^{2}  + 1}{ 1 + t {}^{2} }  -  \frac{1}{1 + t {}^{2} }  \: dt)

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  -  \frac{1}{2}  \: . \: (\displaystyle\int \frac{t {}^{2}  + 1}{1 + t {}^{2} }  \: dt  - \int \frac{1}{1 + t {}^{2} }  \: dt))

2(arctan(t) \: . \:  \frac{t {}^{2} }{2}  -  \frac{1}{2}  \: . \: (t - arctan(t)))

  • Substitua t =  \sqrt{x} .

2(arctan( \sqrt{x} ) \: . \:  \frac{ \sqrt{x}  {}^{2} }{2}  -  \frac{1}{2}  \: . \: ( \sqrt{x}  - arctan( \sqrt{x} )))

2(arctan( \sqrt{x} ) \: . \:  \frac{x}{2}  -  \frac{1}{2}  \: . \:  \sqrt{x}  +  \frac{arctan( \sqrt{x} )}{2} )

2( \frac{arctan( \sqrt{x} ) \: . \: x}{2}  -  \frac{1}{2}  \: . \:  \sqrt{x}  +  \frac{arctan( \sqrt{x}) }{2} )

2( \frac{arctan( \sqrt{x} ) \: . \: x + arctan( \sqrt{x}) }{2}  -  \frac{1}{2}  \: . \:  \sqrt{x} )

arctan( \sqrt{x} ) \: . \: x + arctan( \sqrt{x} ) -  \sqrt{x}

arctan( \sqrt{x} ) \: . \: x + arctan( \sqrt{x} ) -  \sqrt{x}  + C

Att. Makaveli1996

Perguntas interessantes