assunto:potencia "sou nova no assunto,quero tudo explicado
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
Potencia é o resultado de
2³ ( dois ao cubo)
2 x 2 x2=8 é a potencia
2 é a base e o 3 é o expoente e indica quantas vezes vc ira repetir o 2
É PRA JA!
POTENCIAÇAO
A potenciação é a operação matemática baseada em um produto, na qual todos os fatores são o mesmo número real. Exemplo
a²
A potenciação possui oito propriedades mais importantes, com as quais é possível resolver quase todos os problemas envolvendo essa operação:
1 – Expoente zero
Sempre que o expoente de uma potência for zero, independentemente do valor de sua base, o resultado dessa potência será igual a 1. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:
a0 = 1
2 – Expoente unitário
Sempre que o expoente de uma potência for 1, independentemente do valor de sua base, o resultado dessa potência sempre será igual ao valor da base. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:
a1 = a
Produto de potências de mesma base
O resultado de um produto entre duas potências de bases iguais será uma terceira potência, na qual a base será igual às bases das potências que foram multiplicadas, e o expoente será igual à soma dos expoentes dessas potências.
Matematicamente, se a for pertencente ao conjunto dos números reais, e m e n pertencentes ao conjunto dos números naturais, com a ≠ 0, teremos
a²elevado a 3 = ².³ = 6
a^6
4 – Divisão de potências de mesma base
Na divisão de potências de mesma base, mantemos a base no resultado, e seu expoente será a diferença entre os expoentes das potências que estão sendo divididas.
Assim, traduzindo matematicamente, se a for pertencente ao conjunto dos números reais, m e n pertencentes ao conjunto dos números naturais, com a ≠ 0
3³.3² = 3^5
5 – Potência de potência
Isso ocorre quando a base de uma potência é outra potência. Nesse caso, multiplicamos os expoentes e conservamos a base.
Assim, se a for pertencente ao conjunto dos números reais e diferente de zero, m e n pertencentes ao conjunto dos números naturais, teremos:
(an)m = an·m
6 – Potência cuja base é uma divisão ou um produto
Nesse caso, cada um dos fatores deverá ser elevado separadamente ao expoente da potência. Dessa forma, se a e b forem pertencentes ao conjunto dos números reais e diferentes de zero, e m pertencente ao conjunto dos números naturais, teremos:
(a·b)n = an·bn
Se a base for uma divisão, teremos:
(a:b)n = an:bn
Esse último caso também pode ser expresso na forma de fração.
7 – Expoentes negativos
Quando um expoente é negativo, seu sinal poderá ser invertido desde que, para isso, a base da potência também seja invertida.
Assim, caso a pertença aos números reais, e n seja pertencente aos números naturais e diferente de zero, teremos:
3^-2 = 1/3²