Matemática, perguntado por gugyscom, 11 meses atrás

Assunto: Forma algébrica de um número complexo.​

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
1

1)

z_{1}=1+2i\\z_{2}=-1+3i\\z_{3}=3-2i

a)

\bf{z_{1}+z_{2}=\cancel1+2i-\cancel1+3i=5i}

b)

\bf{z_{1}-z_{2}=(1+2i)-(-1+3i)}

\bf{z_{1}-z_{2}=1+2i+1-3i}

\bf{z_{1}-z_{2}=2-i}

c)

z_{1}.z_{2}=(1+2i)(-1+3i) =-1+3i-2i+6{i}^{2}

z_{1}.z_{2}=-1+i+6(-1)

\bf{z_{1}.z_{2}=i-7}

d)

(z_{1}+z_{2}).z_{3}=5i(3-2i) =15i-6{i}^{2}

(z_{1}+z_{2}).z_{3}=15i-6(-1)

\bf{(z_{1}+z_{2}).z_{3}=15i+6}

2)

a) faça a parte real igual a zero

{x}^{2}-x=0\\x(x-1)=0

\bf(x=0}\\\bf{x-1=0}\\\bf{x=1}

b) faça a parte imaginária igual a zero

 3+({x}^{2}-4)i

 {x}^{2}-4=0\\{x}^{2}=4\\x=±\sqrt{4}

\bf{x=-2}\:e\:x=2

3)

a)

4{x}^{2}-4x+2=0

\Delta=16-32=-16

x=\dfrac{4±4i}{8}

x'=\dfrac{4+4i}{8}=\dfrac{\cancel{4}(1+i)}{\cancel{8}}

\bf{x'=\dfrac{1+i}{2}}

\bf{x''=\dfrac{1-i}{2}}

b)

{x}^{2}-14x+50=0

\Delta=196-200=-4

x=\dfrac{14±2i}{2}=\dfrac{\cancel2(7±i)}{\cancel2}

\bf{x'=7+i}\\\bf{x''=7-i}

Perguntas interessantes