Matemática, perguntado por suelenoliveira00, 11 meses atrás

As retas a,b e c são paralelas e r e s são transversais. Determine o valor de x


Pf, preciso disso pra hoje

Anexos:

Soluções para a tarefa

Respondido por silvageeh
4

O valor de x é 6.

Observe o que diz o Teorema de Tales:

Se duas retas são transversais de um feixe de retas paralelas, então a razão entre dois segmentos quaisquer de uma delas é igual à razão entre os segmentos correspondentes da outra.

Como as retas r e s são transversais e a, b, c são retas paralelas, então utilizaremos o Teorema de Tales para calcular o valor de x.

De acordo com a definição acima, é correto dizer que:

3x/(x + 6) = (x + 3)/x

3x.x = (x + 6)(x + 3)

3x² = x² + 3x + 6x + 18

2x² - 9x - 18 = 0.

Temos aqui uma equação do segundo grau. Para resolvê-la, vamos utilizar a fórmula de Bhaskara:

Δ = (-9)² - 4.2.(-18)

Δ = 81 + 144

Δ = 225

x=\frac{9+-\sqrt{225}}{2.2}

x=\frac{9+-15}{4}

x'=\frac{9+15}{4}=6

x''=\frac{9-15}{4}=-\frac{3}{2}.

Como x é uma medida, então não podemos utilizar o valor negativo. Portanto, o valor de x é 6.

Perguntas interessantes