As raízes da equação x^3 - 9x^2 + 11x + 21=0 estão em P.A.Calcule o produto das duas maiores raízes.
Soluções para a tarefa
Respondido por
0
Resposta:
Explicação passo-a-passo:
As raízes da equação x^3 - 9x^2 + 11x + 21=0 estão em P.A.Calcule o produto das duas maiores raízes.
x³ - 9x² + 11x + 21 = 0
veja
x³ = x.x.x
+21 = -7(-3)(1)
assim
x³ - 9x² + 11x + 21 = 0
(x - 7)(x - 3)(x + 1) = 0
então
(x - 7) = 0
x - 7 =0
x = + 7
e
(x - 3) = 0
x - 3 = 0
x = + 3
E
(X + 1) =0
X + 1 = 0
X = - 1
as raizes
x' = 7
x'' = 3
x''' = - 1
PRODUTO = multiplicação
Calcule o produto das duas maiores raízes.
7 x 3 = 21
Perguntas interessantes
Matemática,
9 meses atrás
Português,
9 meses atrás
Geografia,
9 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Português,
1 ano atrás