As integrais duplas podem ser aplicadas no cálculo da área de figuras planas e do volume de sólidos, desde que considerando funções e regiões convenientes. Qual o volume do sólido limitado superiormente pela superfície representada pela função f(x,y) = xy e inferiormente pela região retangular R = [0,1]x[0,1] no plano xy? Alternativas: a) 1/4. b) 1/2. c) 1. d) 3/2. e) 2.
Soluções para a tarefa
Respondido por
1
Boa noite Brinde!
Solução!
![V=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}dydx\\\\\\\\
V=\displaystyle\int_{0}^{1}x\bigg[y\bigg]_{0}^{1}dx\\\\\\\\
V=\displaystyle\int_{0}^{1}x\bigg[ \frac{ y^{2} }{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[y^{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[y^{2} - y^{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[1^{2} - 0^{2} \bigg]_{0}^{1}dx
V=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}dydx\\\\\\\\
V=\displaystyle\int_{0}^{1}x\bigg[y\bigg]_{0}^{1}dx\\\\\\\\
V=\displaystyle\int_{0}^{1}x\bigg[ \frac{ y^{2} }{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[y^{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[y^{2} - y^{2} \bigg]_{0}^{1}dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[1^{2} - 0^{2} \bigg]_{0}^{1}dx](https://tex.z-dn.net/?f=V%3D%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7D%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Ddydx%5C%5C%5C%5C%5C%5C%5C%5C%0A+V%3D%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5By%5Cbigg%5D_%7B0%7D%5E%7B1%7Ddx%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5B+%5Cfrac%7B+y%5E%7B2%7D+%7D%7B2%7D+%5Cbigg%5D_%7B0%7D%5E%7B1%7Ddx%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D+%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5By%5E%7B2%7D++%5Cbigg%5D_%7B0%7D%5E%7B1%7Ddx%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D+%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5By%5E%7B2%7D++-+y%5E%7B2%7D++%5Cbigg%5D_%7B0%7D%5E%7B1%7Ddx%5C%5C%5C%5C%5C%5C%5C%5C+%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D+%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5B1%5E%7B2%7D++-+0%5E%7B2%7D++%5Cbigg%5D_%7B0%7D%5E%7B1%7Ddx%0A+)
![V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[1 \bigg]dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}xdx\\\\\\\\
V= \dfrac{1}{2}\bigg[x \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}\bigg[ \frac{ x^{2} }{2} \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ x^{2}- x^{2} \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ 1- 0\bigg]\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ 1\bigg]\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2}\\\\\\
V= \dfrac{1}{4}u~~v
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}x\bigg[1 \bigg]dx\\\\\\\\
V= \dfrac{1}{2} \displaystyle\int_{0}^{1}xdx\\\\\\\\
V= \dfrac{1}{2}\bigg[x \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}\bigg[ \frac{ x^{2} }{2} \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ x^{2}- x^{2} \bigg]_{0}^{1}\\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ 1- 0\bigg]\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2} \bigg[ 1\bigg]\\\\\\\
V= \dfrac{1}{2}. \dfrac{1}{2}\\\\\\
V= \dfrac{1}{4}u~~v](https://tex.z-dn.net/?f=V%3D+%5Cdfrac%7B1%7D%7B2%7D+%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dx%5Cbigg%5B1+%5Cbigg%5Ddx%5C%5C%5C%5C%5C%5C%5C%5C%0A+V%3D+%5Cdfrac%7B1%7D%7B2%7D+%5Cdisplaystyle%5Cint_%7B0%7D%5E%7B1%7Dxdx%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5Bx+%5Cbigg%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B+%5Cfrac%7B+x%5E%7B2%7D+%7D%7B2%7D++%5Cbigg%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D.+%5Cdfrac%7B1%7D%7B2%7D+%5Cbigg%5B++x%5E%7B2%7D-+x%5E%7B2%7D+%5Cbigg%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5C%5C%5C%5C%5C%0A%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D.+%5Cdfrac%7B1%7D%7B2%7D+%5Cbigg%5B+1-+0%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D.+%5Cdfrac%7B1%7D%7B2%7D+%5Cbigg%5B+1%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B2%7D.+%5Cdfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%5C%5C%0AV%3D+%5Cdfrac%7B1%7D%7B4%7Du%7E%7Ev%0A%0A%0A)

Boa noite!
Bons estudos!
Solução!
Boa noite!
Bons estudos!
Perguntas interessantes
Geografia,
1 ano atrás
Física,
1 ano atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás