Biologia, perguntado por fabiofmh11, 11 meses atrás

Após realizar o cálculo da análise de variância de um dado experimento agrícola, um engenheiro agrônomo obteve os seguintes resultados (Tabela 1).



Tabela 1. Resultados de análise de variância.

Fonte de variação

Grau de liberdade

Soma de quadrados

Quadrado médio

F calculado

Variedades (A)

1

0,02097

0,02097

5,71

Adubos (B)

1

0,21883

0,21883

59,62

AxB

1

0,1723

0,1723

48,12

Tratamentos

3

0,4124

0,137

34,25

Resíduo

8

0,0294

0,00367



TOTAL

11

0,4418







Analise as informações apresentadas no quadro de análise de variância e classifique as afirmativas a seguir em verdadeiras (V) ou falsas (F).



( ) Com base no quadro de análise variância, pode-se inferir que o experimento foi conduzido em delineamento inteiramente casualizado;

( ) Infere-se que o experimento apresentava dois níveis do Fator A e dois níveis do Fator B, ou seja, Fatorial 2x2;

( ) O número de repetições do estudo em questão era igual a 4;

( ) O número total de parcelas é igual a 12, sendo possível observar ainda que no referido estudo houve interação significativa entre as variedades e os adubos analisados.

Assinale a alternativa que apresenta a sequência CORRETA.

Escolha uma:
a.
V - V - F - V

b.
F - V - V - F

c.
F - F - V - V

d.
V - F - V - F Incorreto

e.
V - V - F - F

Soluções para a tarefa

Respondido por gabrielaugusto26
28

Resposta:

V - V - F - V. Correto

Explicação:

Respondido por mayaravieiraj
0

Fazendo uma análise de variância, a ordem é:

V - V - F - V

A importância do cálculo da variância e do desvio padrão

  • Tanto a variância quanto o desvio padrão são importantes medidas de dispersão utilizadas quando se deseja analisar uma distribuição de dados;

  • A variância e o desvio padrão calculam quão espalhados os pontos experimentais se encontram  da média da distribuição;

  • O cálculo do desvio padrão é a raiz quadrada da variância, ao passo que a variância é calculada por meio do somatório dos quadrados da diferença entre cada valor experimental e a média aritmética e, por fim dividida pelo número de elementos observados:
  • Var (x) = ∑(x-μ)²/n

leia mais sobre medidas de dispersão:
https://brainly.com.br/tarefa/4479329

Anexos:
Perguntas interessantes