Matemática, perguntado por anabeatriz3649, 1 ano atrás

ao planejar uma prova de matemática contendo 5 questões um professor dispõe de 5 questões de álgebra e 6 de trigonometria Calcule o número da prova diferente que é possível elaborar usando cada prova duas questões de álgebra e 3 de trigonometria

Soluções para a tarefa

Respondido por GabrielSchopenhauer
2

C5,2 x C6,3 = (5 . 4) /2 x( 6 . 5. 4) / 6 = 10 x 20 = 200 provas

Respondido por AlissonLaLo
1

\Large\boxed{\boxed{\boxed{{Ola\´\ Ana}}}}}

Temos um exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A prova planejada será de matemática , que irá conter 2 questões de Álgebra e 3 de Trigonometria e temos 5 questões de Álgebra para escolher as 2 , e 6 questões de Trigonometria para escolher 3 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Usaremos combinação simples como dito no inicio.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula :

Cₐ,ₓ = a!/x!(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Quantidade de provas = C₅,₂ = 5!/2!(5-2)!  × C₆,₃ = 6!/3!(6-3)! =

Q = (5!/2!×3!) × (6!/3!×3!)

Q = (5×4×3!/2!×3!) × (6×5×4×3!/3!×3!)

Q = (5×4/2) × (6×5×4/3×2)

Q = (20/2) × (120/6)

Q = 10 × 20

Q = 200

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 200 provas diferentes que o professor pode elaborar.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

ESPERO TER AJUDADO!

Perguntas interessantes