Matemática, perguntado por eusafira, 1 ano atrás

Ao planejar uma prova de matemática contendo 5 questões, um professor dispõe de 5 questões de álgebra, e 6 de trigonometria. Calcule o número de provas diferentes que é possível elaborar, usando em cada prova 2 questões de álgebra e 3 de trigonometria

Soluções para a tarefa

Respondido por Joaovictoripiraja
1

Para algebra temos 5 questões para preencher 2 espaços- sem influênciar a ordem- C5,2

Para trigonometria temos 6 questões para 3 espaços- sem influênciar a ordem- C6,3

C5,2*C5,3*2!= 200 provas





Respondido por AlissonLaLo
0

\Large\boxed{\boxed{\boxed{{Ola\´\ Eusafira}}}}}

Temos um exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A prova planejada será de matemática , que irá conter 2 questões de Álgebra e 3 de Trigonometria e temos 5 questões de Álgebra para escolher as 2 , e 6 questões de Trigonometria para escolher 3 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Usaremos combinação simples como dito no inicio.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula :

Cₐ,ₓ = a!/x!(a-x)!

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Quantidade de provas = C₅,₂ = 5!/2!(5-2)!  × C₆,₃ = 6!/3!(6-3)! =

Q = (5!/2!×3!) × (6!/3!×3!)

Q = (5×4×3!/2!×3!) × (6×5×4×3!/3!×3!)

Q = (5×4/2) × (6×5×4/3×2)

Q = (20/2) × (120/6)

Q = 10 × 20

Q = 200

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 200 provas diferentes que o professor pode elaborar.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

ESPERO TER AJUDADO!

Perguntas interessantes