Matemática, perguntado por Usuário anônimo, 1 ano atrás

Ao calcular a integral iterada 2016.2-U1S2-AAP-CDI3-Q10.jpg, chega-se ao seguinte resultado.

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
15
Boa tarde!

Solução!

No final x vai ficar em função de z.


\displaystyle\int _{0}^{2}\displaystyle\int_{0}^{z}\int_{0}^{x+z} 2ydzdydx\\\\\\\\\\
\displaystyle\int _{0}^{2}\displaystyle dx  \displaystyle\int_{0}^{z}2ydy\bigg[x+z\bigg] _{0} ^{x+z} \\\\\\\\\\\\
\displaystyle\int _{0}^{2}\displaystyle dx  2\displaystyle\int_{0}^{z}(yx+yz)dy\\\\\\\\\\\\
2\displaystyle\int _{0}^{2}dx\bigg[yx+yz\bigg]_{0}^{z}\\\\\\\\\\\
2\displaystyle\int _{0}^{2}dx\bigg[ \frac{y^{2} }{2} x+ \frac{ y^{2} }{2} z\bigg]_{0}^{z}\\\\\\\


2\displaystyle\int _{0}^{2}dx\bigg[ \frac{z^{2} }{2} x+ \frac{ z^{2} }{2} z\bigg]_{0}^{z}\\\\\\\
2\displaystyle\int _{0}^{2}dx\bigg[ \frac{z^{2} }{2} x+ \frac{ z^{3} }{2} \bigg]\\\\\\\

2. \dfrac{ z^{2} }{2} \bigg[x+z\bigg]_{0}^{2}\\\\\\\\
2. \dfrac{ z^{2} }{2} \bigg[ \frac{ x^{2} }{2} +z\bigg]_{0}^{2}\\\\\\\\

2. \dfrac{ z^{2} }{2} \bigg[ \frac{ 2^{2} }{2} +z\bigg]\\\\\\\\     
2. \dfrac{ z^{2} }{2} \bigg[ \frac{ 4 }{2} +z\bigg]


2. \dfrac{ z^{2} }{2} \bigg[2 +z\bigg]\\\\\\\\ 2z^{2}\bigg[1+z\bigg]\\\\\\\\
2(2)^{2}\bigg[1+2\bigg]\\\\\\\\
 2.(4)\bigg[3\bigg]\\\\\\\\
8.3=24


\boxed{Resposta:~~\displaystyle\int _{0}^{2}\displaystyle\int_{0}^{z}\int_{0}^{x+z} 2ydzdydx~~=24~~\boxed{Alternativa~~C}}

Boa noite!
Bons estudos!





Usuário anônimo: Muito bom !
Perguntas interessantes