Analise os valores abaixo:
10, 5, 8, 10, 11, 12, 7
Qual é a moda?
Soluções para a tarefa
10
Explicação passo-a-passo:
moda é o numero q mais se repete nesse caso o 10 é o correto
espero q tenha ajudado:)
Explicação passo-a-passo:
Utilizamos a moda, média e mediana para a tomada de decisões.
A moda, a média e a mediana são conhecidas como medidas de tendências centrais. No estudo da Estatística, é bastante comum que elas sejam utilizadas para compreender melhor o comportamento de um conjunto de dados.
Em um conjunto de dados, a moda é o valor mais frequente no conjunto, ou seja, que mais se repete. Já a mediana é o valor central do conjunto. Já com relação às médias, existem vários tipos, sendo as mais comuns a média aritmética simples e a média aritmética ponderada. A moda, a média e a mediana são bastante recorrentes em exames de seleção e no Enem.
Leia também: Medidas de dispersão: amplitude e desvio
Resumo sobre moda, média e mediana
A moda, a média e a mediana são conhecidas como medidas de tendências centrais.
Elas são utilizadas para representar um conjunto de dados com um único valor.
A moda é o valor com maior frequência absoluta em um conjunto.
A mediana é o valor que está posicionado no centro do conjunto.
Existem vários tipos de média, mas os principais são a média aritmética simples e a média aritmética ponderada.
Moda, média e mediana: o que são?
A moda, a média e a mediana são conhecidas como medidas de tendências centrais. Durante o estudo da Estatística, utilizamos as medidas centrais para representar um conjunto de dados com um único valor. A partir da moda, da média ou da mediana, é possível tomar determinadas decisões.
Moda
Em um conjunto de dados, a moda é aquele resultado mais recorrente no conjunto, ou seja, com maior frequência absoluta. Já parou para pensar sobre como as lojas planejam os seus estoques de um determinado produto? Ainda que existam várias marcas de um mesmo produto, há aquele tem maior saída. Para analisar isso, é utilizada a moda.
Exemplo:
Em uma loja de calçados femininos, o estoque é reposto mensalmente. Para entender melhor o consumo de seus clientes, o dono da loja decidiu anotar o tamanho escolhido pelos 35 primeiros clientes em uma lista:
N = {35, 37, 36, 34, 38, 35, 37, 37, 33, 36, 38, 37,35, 37, 34, 33, 37, 36, 35, 38, 36, 35, 36, 37, 38, 39, 37, 37, 36, 37, 33, 37, 35, 37, 39}
Analisando os dados coletados, para realizar o próximo pedido, o tamanho de calçado mais recorrente entre as clientes é a moda desse conjunto.
N = {35, 37, 36, 34, 38, 35, 37, 37, 33, 36, 38, 37,35, 37, 34, 33, 37, 36, 35, 38, 36, 35, 36, 37, 38, 39, 37, 37, 36, 37, 33, 37, 35, 37, 39}
A partir da moda, é possível perceber que 37 é o tamanho mais recorrente entre as clientes dessa loja, dado esse que ajudaria a loja na escolha dos tamanhos na hora de repor o estoque. Representamos a moda por Mo. Nesse caso, temos que Mo = 37.
Para encontrar a moda, basta escolher o valor com maior frequência absoluta.
Exemplo 2:
Analise os conjuntos e encontre a sua moda:
a) A = {1, 0, 2, 3, 1, 4, 5, 1, 2, 3, 0, 7, 8, 9}
Analisando o conjunto A, é possível perceber que existem dois elementos que mais se repetem no conjunto:
A = {1, 0, 2, 3, 1, 4, 5, 1, 0, 3, 0, 7, 8, 9, 0, 1}
Nesse caso existem dois valores que possuem maior frequência absoluta, logo o conjunto terá duas modas, configurando-se como um conjunto bimodal.
Mo = {0, 1}
b) B { 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6}
Analisando esse conjunto, podemos perceber que todos os elementos se repetem de forma igualitária. Quando a frequência absoluta dos termos é a mesma, o conjunto não terá uma moda, logo dizemos que o conjunto é amodal