Ana Vitória quitou um empréstimo pagando o valor descontado comercial de R$ 7.840,00, com 6 meses de antecedência a uma taxa de desconto de 18% a.a. Determine qual era o valor nominal do título e a taxa de juros efetiva do desconto comercial, respectivamente. Elaborado pelo autor, 2018.
Soluções para a tarefa
Vd=N.(1-d.n)
Vd=7.840,00
N=?
d=18/12=1,5 1,5/100=0,015a.m
n=6
7.840=N(1-0,015.6)
7.840=0,91N
N=7.840/0,91
N=8.615,38 Esse é o valor nominal.
Calcular a taxa efetiva.
i=d/1-d.n
i=0,015/1-0,015.6
i=0,015/0,91
i=0,01648
i-0.01648 x 100=1,648% a.m
Resposta letra B
Boa tarde,
Para resolução da questão usaremos a fórmula de desconto comercial:
onde,
VF = Valor futuro ou valor nominal = ?
VP = Valor presente = 7.840
i = taxa de juros = 0,18
n = período = 6 meses ou 0,5 ano
.
Aplicando os valores na fórmula:
.
Para encontrar a taxa efetiva, usamos a fórmula:
ie = ia / (1 - ia * n)
onde,
ie = taxa efetiva
ia = taxa atual = 0,18 / 12 = 0,015
aplicando os valores, temos:
ie = 0,015 / (1 - 0,015 x 6)
ie = 0,015 / 0,91
ie = 0,01648 ou 16,48%
.
Portanto o valor nominal do título é R$ 8.615,38
E a taxa efetiva de juros 16,48%