Matemática, perguntado por BárbaraRodrgues, 1 ano atrás

Alguns problemas requerem o calculo algebrico de limites de funçõesao x se aproximar de + ou - infinito. Normalmente estes problemas resultam em formas indeterminadas, como (infinito/infinito) ou (infinito - infinto) por exemplo, isto significa que você ainda não determinou uma resposta. Usualmente estas formas indeterminadas podem ser controladas por manipulação algébricas.
A figura representa o gráfico da função ( 7 + x) / ( 2x + 1 ), está apresenta uma forma indeterminada de limite, manipule algebricamente a expressão de forma a obter um limite numericamente real.
lim (x -> - infinito) = 7 + x / 2x +1 = (- infinito / - infinito)

Soluções para a tarefa

Respondido por andresaribeiro
3
Vamos simplificar a fração: (7+x)/(2x+1) = x/x (7/x+1)/(2+1/x) = (7/x+1)/(2+1/x)

(7+x) = x·(7/x+1) 
(2x+1) = x·(2+1/x)

lim (7+x)/(2x+1) = (7/x+1)/(2+1/x) = (0+1)/(2+0) = 1/2
x→-∞

Fazendo de outra maneira, pela regra de L'Hospital, temos:

lim (7+x)/(2x+1) = (d(7+x)/dx)/(d(2x+1)/dx) = 1/2
x→-∞

d(7+x)/dx = 0+1 = 1
d(2x+1)/dx = 2+0 = 2

Essa regra nos diz que derivando o numerador e o denominador, podemos encontrar o limite, caso não voltemos a uma indeterminação.Caso após o uso da regra, a indeterminação continue, podemos usar novamente a regra se estivermos em uma indeterminação 0/0 ou ∞/∞

Ela não é válida para todos os tipos de indeterminação, apenas para 0/0 ∞/∞
Perguntas interessantes