Matemática, perguntado por davidBRshadow, 7 meses atrás

alguem saber responder ?
2) Calcular os zeros das funções abaixo:
2
f(×) = x. - 5x. + 6
2
f(×) = x. - 6x + 9​

Soluções para a tarefa

Respondido por Leticia1618
3

Explicação passo-a-passo:

x² - 5x + 6=0

a=1

b=-5

c=6

∆=b²-4ac

∆=(-5)²-4*1*6

∆=25-24

∆=1

-b±√∆/2a

5±√1/2*1

5±1/2

x¹=5+1/2=6/2=>3

x²=5-1/2=4/2=>2

x²- 6x + 9=0

a=1

b=-6

c=9

∆=b²-4ac

∆=(-6)²-4*1*9

∆=36-36

∆=0

-b±√∆/2a

6±√0/2*1

6±0/2

x¹=6+0/2=6/2=>3

x²=6-0/2=6/2=>3

Respondido por xGABRIIELx
13

Hollo★

~~~~~~~\Huge{|}\Large{\boxed{\boxed{\blue{\sf~Math}}}}\Huge{|}

1) f(x) = x - 5x + 6.

~~~~~~~~~~~~~~\huge↓

  • Combine x e -5 x para obter -4x.

 \Large\sf-4x+6=0

  • Subtraia 6 de ambos os lados. Qualquer número subtraído do zero dá sua negação.

\Large\sf-4x=-6

  • Divida ambos os lados por -4.

\Large\sf x=\frac{-6}{-4}

  • Reduza a fração \sf\frac{-6}{-4} aos termos mínimos extraindo e anulando -2.

\Large\sf x=\frac{3}{2}

╭☞ Resposta:

~~~~~~~\Large\boxed{\boxed{\boxed{\sf~x = \frac{3}{2}}}}

_______________

2) f(x) = x - 6x + 9

~~~~~~~~~~~~~~~~~\huge↓

  • Combine x e -6x para obter -5x.

\Large\frac{\sf{d}}{\sf{d}x}\sf(-5x+9)

  • A derivada de um polinômio é a soma das derivadas de seus termos. A derivada de qualquer termo constante é 0. A derivada de \sf ax^{n} é \sf nax^{n-1}.

\Large\sf-5x^{1-1}

  • Subtraia 1 de 1.

\Large\sf-5x^{0}

  • Para qualquer termo t exceto 0, \sf t^{0}=1.

\Large\sf-5

╭☞ Resposta:

~~~~~\Large\boxed{\boxed{\boxed{\sf~-5}}}

_______________

~~~~\Large\boxed{\boxed{\boxed{\green{\sf B}} \boxed{\purple{\sf _{y}}}~\boxed{\red{\sf B}}\boxed{\blue{\sf _{i}}}\boxed{\pink{\sf E}}\boxed{\gray{\sf _{l}}}~}}


agatamaciel340718: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
dafneareas47075: E desculpa trazer problema é que eu sou um problema!
agatamaciel340718: jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
agatamaciel340718: lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
dafneareas47075: kkkiikkk
Perguntas interessantes