Matemática, perguntado por synaragabriela790, 5 meses atrás

Alguém por favor me ajuda ???

Anexos:

Soluções para a tarefa

Respondido por VitiableIndonesia
1

Derivadas

1) f(x) = x

Aplique a derivada

f'(x) =  \frac{d}{dx} (x)

A derivada de uma variável elevada à 1 é sempre 1

Resposta: \color{green} \boxed{{ f'(x) = 1 }}

2) f(x) = 4

f'(x) =  \frac{d}{dx} (4)

Resposta: \color{green} \boxed{{ f'(x) = 0 }}

3) f(x) = 2x

f'(x) =  \frac{d}{dx} (2x)

Resposta: \color{green} \boxed{{f'(x) = 2 }}

4) y =  {x}^{2}

y' =  \frac{d}{dx} ( {x}^{2} )

y' =  {2x}^{2 - 1}

y' =  {2x}^{1}

Resposta: \color{green} \boxed{{ y' = 2x }}

5) y =  {3x}^{4}

y' =  \frac{d}{dx} ( {3x}^{4} )

y' = 3 \times  \frac{d}{dx} ( {x}^{4} )

y' = 3 \times  {4x}^{4 - 1}

y' = 3 \times  {4x}^{3}

Resposta: \color{green} \boxed{{y' =  {12x}^{3}   }}

6) y = 6x + 18

y' =  \frac{d}{dx} (6x + 18)

y' =   \frac{d}{dx}  (6x) +  \frac{d}{dx} (18)

y' = 6 + 0

Resposta: \color{green} \boxed{{ y'  = 6}}

7) f(x) =  {2x}^{2}  - 8

f' (x) =  \frac{d}{dx} ( {2x}^{2}  - 8)

f'(x) =  \frac{d}{dx} ( {2x}^{2} ) -  \frac{d}{dx} (8)

f'(x) =  2 \times \frac{d}{dx} ( {x)}^{2}   -  \frac{d}{dx} (8)

f'(x) = 2 \times 2x -  \frac{d}{dx} (8)

f'(x) = 2 \times 2x - 0

Resposta: \color{green} \boxed{{f '(x) = 4x }}

8) f(x) =  {x}^{2}  + 4x + 4

f'(x) =  \frac{d}{dx} ( {x}^{2}  + 4x + 4)

f'(x) =  \frac{d}{dx} ( {x}^{2} ) +  \frac{d}{dx} (4x) +  \frac{d}{dx} (4)

f'(x) =  {2x}^{2 - 1}  + 4 + 0

Resposta: \color{green} \boxed{{f' (x) = 2x + 4 }}

9) y = x + 1

y' =  \frac{d}{dx} (x + 1) \\ y' =  \frac{d}{dx} (x) +  \frac{d}{dx} (1) \\ y' = 1 + 0

Resposta: \color{green} \boxed{{ y' = 1 }}

10) f(x ) =  {5x}^{4}  -  {4x}^{3}  +  {3x}^{2} -  {2x}^{2}   + 6x + 12

f'(x ) =  \frac{d}{dx} ( {5x}^{4}  -  {4x}^{3}  +  {3x}^{2} -  {2x}^{2}   + 6x + 12)

f'(x ) = \frac{d}{dx} (  {5x}^{4}  -  {4x}^{3}  +   {x}^{2}   + 6x + 12)

f'(x ) =   \frac{d}{dx} ({5x}^{4})  -   \frac{d}{dx}( {4x}^{3})  +   \frac{d}{dx} ({x}^{2})   +  \frac{d}{dx} (6x + 12)

f'(x) = 5 \times  \frac{d}{dx} ( {x}^{4} )   - 4 \times  \frac{d}{dx}  ( {x}^{3} ) +  {2x}^{2 - 1}  + 6 + 0

f'(x) = 5 \times  {4x}^{3}  - 4 \times  {3x}^{2}  + 2x + 6

Resposta: \color{green} \boxed{{ f'(x) = 20 {x}^{3}  - 12 {x}^{2}  + 2x + 6 }}

{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}}

Perguntas interessantes