Alguém poderia me ajudar?
Imagem ao lado
Anexos:
![](https://pt-static.z-dn.net/files/dfc/d49f06a212c38c28d61c6772c8c8e44b.jpg)
Soluções para a tarefa
Respondido por
0
Boa tarde Bruna!
Para resolver um calculo da distancia de um ponto a uma reta basta fazer a substituição na formula acima.Antes precisamos saber que é a e b.
![Formula!\\\\\
d= \dfrac{a.xp+b.yp+c}{ \sqrt{ a^{2}+b^{2} }} } Formula!\\\\\
d= \dfrac{a.xp+b.yp+c}{ \sqrt{ a^{2}+b^{2} }} }](https://tex.z-dn.net/?f=Formula%21%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7Ba.xp%2Bb.yp%2Bc%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D+%7D+)
![A)\\\\\
P(3,1)~~~~~r:3x-4y+5=0\\\\\
Veja,~~vou~~ substituir ~~a~~equc\~ao~~na~~formula,passo~~a~~passo..\\\\\\\
d= \dfrac{|3x-4y+5|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\
a=3\\\\
b=4\\\\\
c=5\\\\\\\\\\
P(3,1)\\\\\
x=3\\\\
y=1\\\\\
d= \dfrac{|3x-4y+5|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\\
d= \dfrac{|3(3)-4(1)+5|}{ \sqrt{ 3^{2}+(-4)^{2} }}}\\\\\\\\\
d= \dfrac{|9-4+5|}{ \sqrt{ 9+16 }}}\\\\\\\\\
d= \dfrac{|10|}{ \sqrt{ 25 }}}
A)\\\\\
P(3,1)~~~~~r:3x-4y+5=0\\\\\
Veja,~~vou~~ substituir ~~a~~equc\~ao~~na~~formula,passo~~a~~passo..\\\\\\\
d= \dfrac{|3x-4y+5|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\
a=3\\\\
b=4\\\\\
c=5\\\\\\\\\\
P(3,1)\\\\\
x=3\\\\
y=1\\\\\
d= \dfrac{|3x-4y+5|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\\
d= \dfrac{|3(3)-4(1)+5|}{ \sqrt{ 3^{2}+(-4)^{2} }}}\\\\\\\\\
d= \dfrac{|9-4+5|}{ \sqrt{ 9+16 }}}\\\\\\\\\
d= \dfrac{|10|}{ \sqrt{ 25 }}}](https://tex.z-dn.net/?f=A%29%5C%5C%5C%5C%5C%0AP%283%2C1%29%7E%7E%7E%7E%7Er%3A3x-4y%2B5%3D0%5C%5C%5C%5C%5C%0AVeja%2C%7E%7Evou%7E%7E+substituir+%7E%7Ea%7E%7Eequc%5C%7Eao%7E%7Ena%7E%7Eformula%2Cpasso%7E%7Ea%7E%7Epasso..%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C3x-4y%2B5%7C%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%0Aa%3D3%5C%5C%5C%5C%0Ab%3D4%5C%5C%5C%5C%5C%0Ac%3D5%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0AP%283%2C1%29%5C%5C%5C%5C%5C%0Ax%3D3%5C%5C%5C%5C%0Ay%3D1%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C3x-4y%2B5%7C%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C3%283%29-4%281%29%2B5%7C%7D%7B+%5Csqrt%7B+3%5E%7B2%7D%2B%28-4%29%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C9-4%2B5%7C%7D%7B+%5Csqrt%7B+9%2B16+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C10%7C%7D%7B+%5Csqrt%7B+25+%7D%7D%7D%0A%0A)
![d= \dfrac{10}{ 5}}\\\\\\\
d=2 d= \dfrac{10}{ 5}}\\\\\\\
d=2](https://tex.z-dn.net/?f=d%3D+%5Cdfrac%7B10%7D%7B+5%7D%7D%5C%5C%5C%5C%5C%5C%5C%0Ad%3D2)
Todas seguem o mesmo raciocinio!
---------------------------------------------------------------------------------------------------
![B)\\\\\
P(2,-2)~~~~r:3x-2y+1=0\\\\\\
a=3\\\
b=-2\\\\\\
d= \dfrac{|3x-2y+1|}{ \sqrt{ a^{2}+b^{2} }}\\\\\\\\
d= \dfrac{|3(2)-2(-2)+1|}{ \sqrt{ 3^{2}+(-2)^{2} }}\\\\\\\
d= \dfrac{|6+4+1|}{ \sqrt{ 9+4 }}\\\\\\\
d= \dfrac{|11|}{ \sqrt{ 13 }}\\\\\\\
d= \dfrac{11}{ \sqrt{ 13 }}\times \dfrac{ \sqrt{13} }{ \sqrt{13} } \\\\\\\
d= \dfrac{11 \sqrt{13} }{ \sqrt{ 169}} \\\\\\\
d= \dfrac{11 \sqrt{13} }{ 13} \\\\\\\
B)\\\\\
P(2,-2)~~~~r:3x-2y+1=0\\\\\\
a=3\\\
b=-2\\\\\\
d= \dfrac{|3x-2y+1|}{ \sqrt{ a^{2}+b^{2} }}\\\\\\\\
d= \dfrac{|3(2)-2(-2)+1|}{ \sqrt{ 3^{2}+(-2)^{2} }}\\\\\\\
d= \dfrac{|6+4+1|}{ \sqrt{ 9+4 }}\\\\\\\
d= \dfrac{|11|}{ \sqrt{ 13 }}\\\\\\\
d= \dfrac{11}{ \sqrt{ 13 }}\times \dfrac{ \sqrt{13} }{ \sqrt{13} } \\\\\\\
d= \dfrac{11 \sqrt{13} }{ \sqrt{ 169}} \\\\\\\
d= \dfrac{11 \sqrt{13} }{ 13} \\\\\\\](https://tex.z-dn.net/?f=B%29%5C%5C%5C%5C%5C%0AP%282%2C-2%29%7E%7E%7E%7Er%3A3x-2y%2B1%3D0%5C%5C%5C%5C%5C%5C%0Aa%3D3%5C%5C%5C%0Ab%3D-2%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C3x-2y%2B1%7C%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C3%282%29-2%28-2%29%2B1%7C%7D%7B+%5Csqrt%7B+3%5E%7B2%7D%2B%28-2%29%5E%7B2%7D+%7D%7D%5C%5C%5C%5C%5C%5C%5C%0A+d%3D+%5Cdfrac%7B%7C6%2B4%2B1%7C%7D%7B+%5Csqrt%7B+9%2B4+%7D%7D%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C11%7C%7D%7B+%5Csqrt%7B+13+%7D%7D%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B11%7D%7B+%5Csqrt%7B+13+%7D%7D%5Ctimes++%5Cdfrac%7B+%5Csqrt%7B13%7D+%7D%7B+%5Csqrt%7B13%7D+%7D+%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B11+%5Csqrt%7B13%7D+%7D%7B+%5Csqrt%7B+169%7D%7D+%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B11+%5Csqrt%7B13%7D+%7D%7B+13%7D+%5C%5C%5C%5C%5C%5C%5C%0A%0A%0A)
---------------------------------------------------------------------------------------------------
![C)\\\\\\ P(0,0)~~r:5x+2y-7=0\\\\\\ a=5\\\\\ b=2\\\\\\\ d= \dfrac{|5x+2y-7|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\\ d= \dfrac{|5(0)+2(0)-7|}{ \sqrt{ 5^{2}+2^{2} }}}\\\\\\\\\\ d= \dfrac{|0+0-7|}{ \sqrt{ 25+4 }}}\\\\\\\\\\ d= \dfrac{|-7|}{ \sqrt{ 29 }}} C)\\\\\\ P(0,0)~~r:5x+2y-7=0\\\\\\ a=5\\\\\ b=2\\\\\\\ d= \dfrac{|5x+2y-7|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\\ d= \dfrac{|5(0)+2(0)-7|}{ \sqrt{ 5^{2}+2^{2} }}}\\\\\\\\\\ d= \dfrac{|0+0-7|}{ \sqrt{ 25+4 }}}\\\\\\\\\\ d= \dfrac{|-7|}{ \sqrt{ 29 }}}](https://tex.z-dn.net/?f=C%29%5C%5C%5C%5C%5C%5C+P%280%2C0%29%7E%7Er%3A5x%2B2y-7%3D0%5C%5C%5C%5C%5C%5C+a%3D5%5C%5C%5C%5C%5C+b%3D2%5C%5C%5C%5C%5C%5C%5C+d%3D+%5Cdfrac%7B%7C5x%2B2y-7%7C%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+d%3D+%5Cdfrac%7B%7C5%280%29%2B2%280%29-7%7C%7D%7B+%5Csqrt%7B+5%5E%7B2%7D%2B2%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+d%3D+%5Cdfrac%7B%7C0%2B0-7%7C%7D%7B+%5Csqrt%7B+25%2B4+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+d%3D+%5Cdfrac%7B%7C-7%7C%7D%7B+%5Csqrt%7B+29+%7D%7D%7D+)
Observe que deu-7 um valor negativo,como ele esta em modulo o valor é 7,pois não existe um numero negativo modular.Em outras palavras não existe distância negativa.
![d= \dfrac{7}{ \sqrt{ 29 }}} \times \dfrac{ \sqrt{29} }{\sqrt{29}}\\\\\\\\\
d= \dfrac{7 \sqrt{29} }{ \sqrt{841 }}} \\\\\\\\\
d= \dfrac{7 \sqrt{29} }{ 29}} \\\\\\\\\
d= \dfrac{7}{ \sqrt{ 29 }}} \times \dfrac{ \sqrt{29} }{\sqrt{29}}\\\\\\\\\
d= \dfrac{7 \sqrt{29} }{ \sqrt{841 }}} \\\\\\\\\
d= \dfrac{7 \sqrt{29} }{ 29}} \\\\\\\\\](https://tex.z-dn.net/?f=d%3D+%5Cdfrac%7B7%7D%7B+%5Csqrt%7B+29+%7D%7D%7D+%5Ctimes+%5Cdfrac%7B+%5Csqrt%7B29%7D+%7D%7B%5Csqrt%7B29%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A+d%3D+%5Cdfrac%7B7+%5Csqrt%7B29%7D+%7D%7B+%5Csqrt%7B841+%7D%7D%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0Ad%3D+%5Cdfrac%7B7+%5Csqrt%7B29%7D+%7D%7B+29%7D%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A)
---------------------------------------------------------------------------------------------------
![D)\\\\\\
P(2,3)~~r:2x+y-7=0\\\\\\
a=2\\\\
b=1\\\\\\\
d= \dfrac{|2x+y-7|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\
d= \dfrac{|2(2)+1(3)+5|}{ \sqrt{ 2^{2}+1^{2} }}}\\\\\\\\\\
d= \dfrac{|4+3+5|}{ \sqrt{ 4+1}}}\\\\\\\\\\
d= \dfrac{|12|}{ \sqrt{ 5}}}\\\\\\\\\\
d= \dfrac{12}{ \sqrt{ 5}}}\times \dfrac{ \sqrt{5}}{ \sqrt{5} } \\\\\\\\\\
d= \dfrac{12 \sqrt{5} }{ \sqrt{ 25}}}
D)\\\\\\
P(2,3)~~r:2x+y-7=0\\\\\\
a=2\\\\
b=1\\\\\\\
d= \dfrac{|2x+y-7|}{ \sqrt{ a^{2}+b^{2} }}}\\\\\\\\\
d= \dfrac{|2(2)+1(3)+5|}{ \sqrt{ 2^{2}+1^{2} }}}\\\\\\\\\\
d= \dfrac{|4+3+5|}{ \sqrt{ 4+1}}}\\\\\\\\\\
d= \dfrac{|12|}{ \sqrt{ 5}}}\\\\\\\\\\
d= \dfrac{12}{ \sqrt{ 5}}}\times \dfrac{ \sqrt{5}}{ \sqrt{5} } \\\\\\\\\\
d= \dfrac{12 \sqrt{5} }{ \sqrt{ 25}}}](https://tex.z-dn.net/?f=D%29%5C%5C%5C%5C%5C%5C%0AP%282%2C3%29%7E%7Er%3A2x%2By-7%3D0%5C%5C%5C%5C%5C%5C%0Aa%3D2%5C%5C%5C%5C%0Ab%3D1%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C2x%2By-7%7C%7D%7B+%5Csqrt%7B+a%5E%7B2%7D%2Bb%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C2%282%29%2B1%283%29%2B5%7C%7D%7B+%5Csqrt%7B+2%5E%7B2%7D%2B1%5E%7B2%7D+%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C4%2B3%2B5%7C%7D%7B+%5Csqrt%7B+4%2B1%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B%7C12%7C%7D%7B+%5Csqrt%7B+5%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B12%7D%7B+%5Csqrt%7B+5%7D%7D%7D%5Ctimes++%5Cdfrac%7B+%5Csqrt%7B5%7D%7D%7B+%5Csqrt%7B5%7D+%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0Ad%3D+%5Cdfrac%7B12+%5Csqrt%7B5%7D+%7D%7B+%5Csqrt%7B+25%7D%7D%7D+%0A%0A%0A%0A%0A%0A%0A%0A%0A)
![d= \dfrac{12 \sqrt{5} }{ 5}}
d= \dfrac{12 \sqrt{5} }{ 5}}](https://tex.z-dn.net/?f=d%3D+%5Cdfrac%7B12+%5Csqrt%7B5%7D+%7D%7B++5%7D%7D%0A)
Boa tarde!
Bons estudos!
Para resolver um calculo da distancia de um ponto a uma reta basta fazer a substituição na formula acima.Antes precisamos saber que é a e b.
Todas seguem o mesmo raciocinio!
---------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
Observe que deu-7 um valor negativo,como ele esta em modulo o valor é 7,pois não existe um numero negativo modular.Em outras palavras não existe distância negativa.
---------------------------------------------------------------------------------------------------
Boa tarde!
Bons estudos!
Usuário anônimo:
Qualquer dúvida mande uma mensagem.
Perguntas interessantes
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Geografia,
1 ano atrás
Biologia,
1 ano atrás
Administração,
1 ano atrás