Matemática, perguntado por yansantana24, 9 meses atrás

alguém me ajudaaaaa pelo amor de Deus, rápido​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

\sf \dfrac{7\pi}{6}=\dfrac{7\cdot180^{\circ}}{6}=\dfrac{1260^{\circ}}{6}=210^{\circ}

\sf sen~210^{\circ}=-sen~(210^{\circ}-180^{\circ})

\sf sen~210^{\circ}=-sen~30^{\circ}

\sf sen~210^{\circ}=-\dfrac{1}{2}

\sf cos~210^{\circ}=-cos~(210^{\circ}-180^{\circ})

\sf cos~210^{\circ}=-cos~30^{\circ}

\sf cos~210^{\circ}=-\dfrac{\sqrt{3}}{2}

Assim:

\sf z=2\sqrt{2}\cdot\Big[cos~\Big(\dfrac{7\pi}{6}\Big)+i\cdot sen~\Big(\dfrac{7\pi}{6}\Big)\Big]

\sf z=2\sqrt{2}\cdot\Big[-\dfrac{\sqrt{3}}{2}+i\cdot \Big(-\dfrac{1}{2}\Big)\Big]

\sf z=-\dfrac{2\sqrt{6}}{2}-i\cdot\dfrac{2\sqrt{2}}{2}

\sf \red{z=-\sqrt{6}-i\cdot\sqrt{2}}

Perguntas interessantes