Matemática, perguntado por talitaambrosimp5kzyp, 11 meses atrás

alguém me ajuda por favor ​

Anexos:

Soluções para a tarefa

Respondido por xotavioined
0

Resposta:

d) bx^2-2by+5x^2-10y

=b\left(x^2-2y\right)+5x^2-10y\\=b\left(x^2-2y\right)+5\left(x^2-2y\right)\\=\left(x^2-2y\right)\left(b+5\right)

e) 2b^2+2-b^2k-k

=\left(2b^2+2\right)+\left(-b^2k-k\right)\\=2\left(b^2+1\right) -k\left(b^2+1\right)\\=\left(b^2+1\right)\left(-k+2\right)\\=-\left(b^2+1\right)\left(k-2\right)

f) 5y^3-4y^2+10y-8

=\left(5y^3-4y^2\right)+\left(10y-8\right)\\=y^2\left(5y-4\right)+2\left(5y-4\right)\\=\left(y^2+2\right)\left(5y-4\right)

g) a^{12}+a^8-a^4-1

Considerando a² = u,

=u^6+u^4-u^2-1\\

Considerando u² = t,

=t^3+t^2-t-1\\=\left(t^3+t^2\right)+\left(-t-1\right)\\=t^2\left(t+1\right)-\left(t+1\right)\\=\left(t+1\right)\left(t^2-1\right)\\=\left(t+1\right)\left(t+1\right)\left(t-1\right)

Voltando t = u²,

=\left(u^2+1\right)\left(u^2+1\right)\left(u^2-1\right)\\=\left(u^2+1\right)\left(u^2+1\right)\left(u+1\right)\left(u-1\right)\\

Voltando u = a²,

=\left(a^4+1\right)\left(a^4+1\right)\left(a^2+1\right)\left(a+1\right)\left(a-1\right)\\=\left(a^4+1\right)^2\left(a^2+1\right)\left(a+1\right)\left(a-1\right)\\=\left(a^4+1\right)^2\left(a^2+1\right)\left(a+1\right)^2

Perguntas interessantes