Matemática, perguntado por biancapaula, 1 ano atrás

alguém me ajuda nesse exercício pfv

Anexos:

Soluções para a tarefa

Respondido por daniel223andrad
1
Transposta de um matriz significa o inverso dela, se uma matriz é 3x2 sua transposta virar a ser 2x3.
mxn->nxm
m = nº de linhas -> n
n = nº de colunas -> m

a)   A_{22} =\left[\begin{array}{ccc}7&-4\\1&0\end{array}\right]   \\ \\ A^t_{22}=  \left[\begin{array}{ccc}7&1\\-4&0\end{array}\right]

b) B_{32}=  \left[\begin{array}{ccc}6&2\\1&0\\4&-1\end{array}\right]  \\  \\ B^t_{23}=  \left[\begin{array}{ccc}6&1&4\\2&0&-1\end{array}\right]

c) C_{23}=  \left[\begin{array}{ccc}0&3&-9\\0&-1&5\end{array}\right]  \\  \\ C^t_{32}=  \left[\begin{array}{ccc}0&0\\3&-1\\-9&5\end{array}\right]

e) E_{42}=  \left[\begin{array}{ccc}0&-2\\1&11\\0,5&7\\3&4,1\end{array}\right]  \\  \\ E^t_{24}  \left[\begin{array}{cccc}0&1&0,5&3\\-2&11&7&4,1\end{array}\right]

f) F_{51}  \left[\begin{array}{ccc}5\\7\\1\\0\\3\end{array}\right]  \\  \\ F^t_{15}=  \left[\begin{array}{ccccc}5&7&1&0&3\end{array}\right]

g) G_{33}=  \left[\begin{array}{ccc}2&1&-2\\-3&1&2\\3&-1&2\end{array}\right]  \\  \\ G^t_{33}=  \left[\begin{array}{ccc}2&-3&3\\1&1&-1\\-2&2&2\end{array}\right]
Respondido por marcoskiko
1
a) A=  \left[\begin{array}{cc}7&-4&1&0&\\\end{array}\right] b)B =  \left[\begin{array}{ccc}6&1&4&2&0&-1\\\end{array}\right] c) C=  \left[\begin{array}{ccc}0&3&-9&0&-1&5\end{array}\right] e) E=  \left[\begin{array}{cccc}0&1&0,5&3&-2&11&7&4,1\end{array}\right] f) F=  \left[\begin{array}{ccccc}5&7&1&0&3&&&\end{array}\right] g)G=  \left[\begin{array}{ccc}2&-3&3&1&1&-1&-2&2&2\end{array}\right]
Perguntas interessantes