Alguém me ajuda nessa questão sobre o Teorema de Pitágoras,pfv!!!!É a questão 7!!!15 pts
Anexos:
![](https://pt-static.z-dn.net/files/d3c/440395471535ec52c668332f5d6e319b.jpg)
Usuário anônimo:
qual? 6 ou 7?
Soluções para a tarefa
Respondido por
2
Questão 6:
Suponhamos que a medida do cateto
seja ![y. y.](https://tex.z-dn.net/?f=y.)
Aplicando o Teorema de Pitágoras ao triângulo![ABD: ABD:](https://tex.z-dn.net/?f=ABD%3A)
![x^2+y^2=5\\\\ y^2=5-x^2~~~~~~\mathbf{(i)} x^2+y^2=5\\\\ y^2=5-x^2~~~~~~\mathbf{(i)}](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3D5%5C%5C%5C%5C+y%5E2%3D5-x%5E2%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28i%29%7D)
Aplicando o Teorema de Pitágoras ao triângulo![ABC: ABC:](https://tex.z-dn.net/?f=ABC%3A)
![(3+x)^2+y^2=6^2\\\\ (3+x)^2+y^2=36 (3+x)^2+y^2=6^2\\\\ (3+x)^2+y^2=36](https://tex.z-dn.net/?f=%283%2Bx%29%5E2%2By%5E2%3D6%5E2%5C%5C%5C%5C+%283%2Bx%29%5E2%2By%5E2%3D36)
Substituindo acima
pela expressão em
temos
![(3+x)^2+(5-x^2)=36\\\\ 9+6x+x^2+5-x^2=36\\\\ 9+6x+5=36\\\\ 6x+14=36\\\\ 6x=36-14\\\\ 6x=22\\\\ x=\dfrac{22}{6}\begin{array}{c}^{\div 2}\\^{\div 2} \end{array}\\\\\\ \boxed{\begin{array}{c} x=\dfrac{11}{3} \end{array}} (3+x)^2+(5-x^2)=36\\\\ 9+6x+x^2+5-x^2=36\\\\ 9+6x+5=36\\\\ 6x+14=36\\\\ 6x=36-14\\\\ 6x=22\\\\ x=\dfrac{22}{6}\begin{array}{c}^{\div 2}\\^{\div 2} \end{array}\\\\\\ \boxed{\begin{array}{c} x=\dfrac{11}{3} \end{array}}](https://tex.z-dn.net/?f=%283%2Bx%29%5E2%2B%285-x%5E2%29%3D36%5C%5C%5C%5C+9%2B6x%2Bx%5E2%2B5-x%5E2%3D36%5C%5C%5C%5C+9%2B6x%2B5%3D36%5C%5C%5C%5C+6x%2B14%3D36%5C%5C%5C%5C+6x%3D36-14%5C%5C%5C%5C+6x%3D22%5C%5C%5C%5C+x%3D%5Cdfrac%7B22%7D%7B6%7D%5Cbegin%7Barray%7D%7Bc%7D%5E%7B%5Cdiv+2%7D%5C%5C%5E%7B%5Cdiv+2%7D+%5Cend%7Barray%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+x%3D%5Cdfrac%7B11%7D%7B3%7D+%5Cend%7Barray%7D%7D)
________________
Questão 7:
Sejam
e
as medidas dos catetos de um triângulo retângulo.
As medianas relativas aos catetos deste triângulo acabam virando hipotenusas de dois novos triângulos retângulos.
Sendo assim, aplicando o Teorema de Pitágoras aos novos triângulos, devemos ter
![\left\{ \!\begin{array}{lc} \left(\dfrac{x}{2} \right )^{\!\!2}+y^2=(6\sqrt{5})^2&~~~~\mathbf{(i)}\\\\ x^2+\left(\dfrac{y}{2} \right )^{\!\!2}=(2\sqrt{15})^2&~~~~\mathbf{(ii)} \end{array} \right. \left\{ \!\begin{array}{lc} \left(\dfrac{x}{2} \right )^{\!\!2}+y^2=(6\sqrt{5})^2&~~~~\mathbf{(i)}\\\\ x^2+\left(\dfrac{y}{2} \right )^{\!\!2}=(2\sqrt{15})^2&~~~~\mathbf{(ii)} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5C%21%5Cbegin%7Barray%7D%7Blc%7D+%5Cleft%28%5Cdfrac%7Bx%7D%7B2%7D+%5Cright+%29%5E%7B%5C%21%5C%212%7D%2By%5E2%3D%286%5Csqrt%7B5%7D%29%5E2%26amp%3B%7E%7E%7E%7E%5Cmathbf%7B%28i%29%7D%5C%5C%5C%5C+x%5E2%2B%5Cleft%28%5Cdfrac%7By%7D%7B2%7D+%5Cright+%29%5E%7B%5C%21%5C%212%7D%3D%282%5Csqrt%7B15%7D%29%5E2%26amp%3B%7E%7E%7E%7E%5Cmathbf%7B%28ii%29%7D+%5Cend%7Barray%7D+%5Cright.)
Da equação
tiramos
![\left(\dfrac{x}{2} \right )^{\!\!2}+y^2=(6\sqrt{5})^2\\\\\\ \dfrac{x^2}{4}+y^2=36\cdot 5\\\\\\ \dfrac{x^2}{4}+y^2=180\\\\\\ \dfrac{x^2}{4}+\dfrac{4y^2}{4}=180\\\\\\ \dfrac{x^2+4y^2}{4}=180\\\\\\ x^2+4y^2=180\cdot 4\\\\ x^2+4y^2=720\\\\ x^2=720-4y^2~~~~~~\mathbf{(iii)} \left(\dfrac{x}{2} \right )^{\!\!2}+y^2=(6\sqrt{5})^2\\\\\\ \dfrac{x^2}{4}+y^2=36\cdot 5\\\\\\ \dfrac{x^2}{4}+y^2=180\\\\\\ \dfrac{x^2}{4}+\dfrac{4y^2}{4}=180\\\\\\ \dfrac{x^2+4y^2}{4}=180\\\\\\ x^2+4y^2=180\cdot 4\\\\ x^2+4y^2=720\\\\ x^2=720-4y^2~~~~~~\mathbf{(iii)}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7Bx%7D%7B2%7D+%5Cright+%29%5E%7B%5C%21%5C%212%7D%2By%5E2%3D%286%5Csqrt%7B5%7D%29%5E2%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E2%7D%7B4%7D%2By%5E2%3D36%5Ccdot+5%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E2%7D%7B4%7D%2By%5E2%3D180%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E2%7D%7B4%7D%2B%5Cdfrac%7B4y%5E2%7D%7B4%7D%3D180%5C%5C%5C%5C%5C%5C+%5Cdfrac%7Bx%5E2%2B4y%5E2%7D%7B4%7D%3D180%5C%5C%5C%5C%5C%5C+x%5E2%2B4y%5E2%3D180%5Ccdot+4%5C%5C%5C%5C+x%5E2%2B4y%5E2%3D720%5C%5C%5C%5C+x%5E2%3D720-4y%5E2%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28iii%29%7D)
Na equação
substituindo
pela expressão em
acima, temos
![(720-4y^2)+\left(\dfrac{y}{2} \right )^{\!\!2}=(2\sqrt{15})^2\\\\\\ 720-4y^2+\dfrac{y^2}{4}=4\cdot 15\\\\\\ 720-4y^2+\dfrac{y^2}{4}=60\\\\\\ \dfrac{4\cdot (720-4y^2)}{4}+\dfrac{y^2}{4}=60\\\\\\ \dfrac{2\,880-16y^2}{4}+\dfrac{y^2}{4}=60\\\\\\ \dfrac{2\,880-16y^2+y^2}{4}=60 (720-4y^2)+\left(\dfrac{y}{2} \right )^{\!\!2}=(2\sqrt{15})^2\\\\\\ 720-4y^2+\dfrac{y^2}{4}=4\cdot 15\\\\\\ 720-4y^2+\dfrac{y^2}{4}=60\\\\\\ \dfrac{4\cdot (720-4y^2)}{4}+\dfrac{y^2}{4}=60\\\\\\ \dfrac{2\,880-16y^2}{4}+\dfrac{y^2}{4}=60\\\\\\ \dfrac{2\,880-16y^2+y^2}{4}=60](https://tex.z-dn.net/?f=%28720-4y%5E2%29%2B%5Cleft%28%5Cdfrac%7By%7D%7B2%7D+%5Cright+%29%5E%7B%5C%21%5C%212%7D%3D%282%5Csqrt%7B15%7D%29%5E2%5C%5C%5C%5C%5C%5C+720-4y%5E2%2B%5Cdfrac%7By%5E2%7D%7B4%7D%3D4%5Ccdot+15%5C%5C%5C%5C%5C%5C+720-4y%5E2%2B%5Cdfrac%7By%5E2%7D%7B4%7D%3D60%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B4%5Ccdot+%28720-4y%5E2%29%7D%7B4%7D%2B%5Cdfrac%7By%5E2%7D%7B4%7D%3D60%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B2%5C%2C880-16y%5E2%7D%7B4%7D%2B%5Cdfrac%7By%5E2%7D%7B4%7D%3D60%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B2%5C%2C880-16y%5E2%2By%5E2%7D%7B4%7D%3D60)
![\dfrac{2\,880-15y^2}{4}=60\\\\\\ \dfrac{\diagup\!\!\!\!\! 15\cdot (192-y^2)}{4}=\diagup\!\!\!\!\! 15\cdot 4\\\\\\ \dfrac{192-y^2}{4}=4\\\\\\ 192-y^2=4\cdot 4\\\\ 192-y^2=16\\\\ y^2=192-16\\\\ y^2=176\\\\ y^2=\sqrt{176}\\\\ \boxed{\begin{array}{c}y=16 \end{array}} \dfrac{2\,880-15y^2}{4}=60\\\\\\ \dfrac{\diagup\!\!\!\!\! 15\cdot (192-y^2)}{4}=\diagup\!\!\!\!\! 15\cdot 4\\\\\\ \dfrac{192-y^2}{4}=4\\\\\\ 192-y^2=4\cdot 4\\\\ 192-y^2=16\\\\ y^2=192-16\\\\ y^2=176\\\\ y^2=\sqrt{176}\\\\ \boxed{\begin{array}{c}y=16 \end{array}}](https://tex.z-dn.net/?f=%5Cdfrac%7B2%5C%2C880-15y%5E2%7D%7B4%7D%3D60%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+15%5Ccdot+%28192-y%5E2%29%7D%7B4%7D%3D%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21+15%5Ccdot+4%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B192-y%5E2%7D%7B4%7D%3D4%5C%5C%5C%5C%5C%5C+192-y%5E2%3D4%5Ccdot+4%5C%5C%5C%5C+192-y%5E2%3D16%5C%5C%5C%5C+y%5E2%3D192-16%5C%5C%5C%5C+y%5E2%3D176%5C%5C%5C%5C+y%5E2%3D%5Csqrt%7B176%7D%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Dy%3D16+%5Cend%7Barray%7D%7D)
Encontrando a medida do cateto![x: x:](https://tex.z-dn.net/?f=x%3A)
![x^2=720-4y^2\\\\ x^2=720-4\cdot 176\\\\ x^2=720-704\\\\ x^2=16\\\\ x=\sqrt{16}\\\\ \boxed{\begin{array}{c} x=4 \end{array}} x^2=720-4y^2\\\\ x^2=720-4\cdot 176\\\\ x^2=720-704\\\\ x^2=16\\\\ x=\sqrt{16}\\\\ \boxed{\begin{array}{c} x=4 \end{array}}](https://tex.z-dn.net/?f=x%5E2%3D720-4y%5E2%5C%5C%5C%5C+x%5E2%3D720-4%5Ccdot+176%5C%5C%5C%5C+x%5E2%3D720-704%5C%5C%5C%5C+x%5E2%3D16%5C%5C%5C%5C+x%3D%5Csqrt%7B16%7D%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+x%3D4+%5Cend%7Barray%7D%7D)
O menor cateto é
que mede
unidades.
Suponhamos que a medida do cateto
Aplicando o Teorema de Pitágoras ao triângulo
Aplicando o Teorema de Pitágoras ao triângulo
Substituindo acima
________________
Questão 7:
Sejam
As medianas relativas aos catetos deste triângulo acabam virando hipotenusas de dois novos triângulos retângulos.
Sendo assim, aplicando o Teorema de Pitágoras aos novos triângulos, devemos ter
Da equação
Na equação
Encontrando a medida do cateto
O menor cateto é
Perguntas interessantes