Alguém me ajuda a resolver essa questão por favor?
(x-1).(x+1)+3.(x-1).(x-1)+3.(x-1)+1
Soluções para a tarefa
Respondido por
0
Dada as propriedades:
◾![\mathsf{\left(a+b\right)\cdot \left(a-b\right)=a^2-b^2} \mathsf{\left(a+b\right)\cdot \left(a-b\right)=a^2-b^2}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%28a%2Bb%5Cright%29%5Ccdot+%5Cleft%28a-b%5Cright%29%3Da%5E2-b%5E2%7D)
◾![\mathsf{\left(a+b\right)^2=a^2+2ab+b^2} \mathsf{\left(a+b\right)^2=a^2+2ab+b^2}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%28a%2Bb%5Cright%29%5E2%3Da%5E2%2B2ab%2Bb%5E2%7D)
◾![\mathsf{\left(a-b\right)^2=a^2-2ab+b^2} \mathsf{\left(a-b\right)^2=a^2-2ab+b^2}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%28a-b%5Cright%29%5E2%3Da%5E2-2ab%2Bb%5E2%7D)
- - - - -
Logo:
![\mathsf{\left(x-1\right)\cdot \left(x+1\right)+3\cdot \left(x-1\right).\left(x-1\right)+3\cdot \left(x-1\right)+1=}\\\\\mathsf{=\left[\left(x-1\right)\cdot \left(x+1\right)\right]+\left[3\cdot \left(x-1\right).\left(x-1\right)\right]+\left[3\cdot \left(x-1\right)\right]+1}\\\\\mathsf{=\left(x^2-1\right)+3\cdot \left(x-1\right)^2+\left[3\cdot \left(x-1\right)\right]+1}\\\\\mathsf{=x^2-\diagup \!\!\!\! 1+3\cdot \left(x^2-2x+1\right)+\left(3x-3\right)+\diagup \!\!\!\!1}\\\\\mathsf{=x^2+\left(3x^2-6x+3\right)+\left(3x-3\right)}\\\\\mathsf{=x^2+3x^2-6x+\diagup \!\!\!\! 3+3x-\diagup \!\!\!\! 3}\\\\\mathsf{=4x^2-6x+3x}\\\\\mathsf{=\:}\boxed{\mathsf{4x^2-3x}}\: \: \checkmark \mathsf{\left(x-1\right)\cdot \left(x+1\right)+3\cdot \left(x-1\right).\left(x-1\right)+3\cdot \left(x-1\right)+1=}\\\\\mathsf{=\left[\left(x-1\right)\cdot \left(x+1\right)\right]+\left[3\cdot \left(x-1\right).\left(x-1\right)\right]+\left[3\cdot \left(x-1\right)\right]+1}\\\\\mathsf{=\left(x^2-1\right)+3\cdot \left(x-1\right)^2+\left[3\cdot \left(x-1\right)\right]+1}\\\\\mathsf{=x^2-\diagup \!\!\!\! 1+3\cdot \left(x^2-2x+1\right)+\left(3x-3\right)+\diagup \!\!\!\!1}\\\\\mathsf{=x^2+\left(3x^2-6x+3\right)+\left(3x-3\right)}\\\\\mathsf{=x^2+3x^2-6x+\diagup \!\!\!\! 3+3x-\diagup \!\!\!\! 3}\\\\\mathsf{=4x^2-6x+3x}\\\\\mathsf{=\:}\boxed{\mathsf{4x^2-3x}}\: \: \checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%28x-1%5Cright%29%5Ccdot+%5Cleft%28x%2B1%5Cright%29%2B3%5Ccdot+%5Cleft%28x-1%5Cright%29.%5Cleft%28x-1%5Cright%29%2B3%5Ccdot+%5Cleft%28x-1%5Cright%29%2B1%3D%7D%5C%5C%5C%5C%5Cmathsf%7B%3D%5Cleft%5B%5Cleft%28x-1%5Cright%29%5Ccdot+%5Cleft%28x%2B1%5Cright%29%5Cright%5D%2B%5Cleft%5B3%5Ccdot+%5Cleft%28x-1%5Cright%29.%5Cleft%28x-1%5Cright%29%5Cright%5D%2B%5Cleft%5B3%5Ccdot+%5Cleft%28x-1%5Cright%29%5Cright%5D%2B1%7D%5C%5C%5C%5C%5Cmathsf%7B%3D%5Cleft%28x%5E2-1%5Cright%29%2B3%5Ccdot+%5Cleft%28x-1%5Cright%29%5E2%2B%5Cleft%5B3%5Ccdot+%5Cleft%28x-1%5Cright%29%5Cright%5D%2B1%7D%5C%5C%5C%5C%5Cmathsf%7B%3Dx%5E2-%5Cdiagup+%5C%21%5C%21%5C%21%5C%21+1%2B3%5Ccdot+%5Cleft%28x%5E2-2x%2B1%5Cright%29%2B%5Cleft%283x-3%5Cright%29%2B%5Cdiagup+%5C%21%5C%21%5C%21%5C%211%7D%5C%5C%5C%5C%5Cmathsf%7B%3Dx%5E2%2B%5Cleft%283x%5E2-6x%2B3%5Cright%29%2B%5Cleft%283x-3%5Cright%29%7D%5C%5C%5C%5C%5Cmathsf%7B%3Dx%5E2%2B3x%5E2-6x%2B%5Cdiagup+%5C%21%5C%21%5C%21%5C%21+3%2B3x-%5Cdiagup+%5C%21%5C%21%5C%21%5C%21+3%7D%5C%5C%5C%5C%5Cmathsf%7B%3D4x%5E2-6x%2B3x%7D%5C%5C%5C%5C%5Cmathsf%7B%3D%5C%3A%7D%5Cboxed%7B%5Cmathsf%7B4x%5E2-3x%7D%7D%5C%3A+%5C%3A+%5Ccheckmark)
◾
◾
◾
- - - - -
Logo:
Perguntas interessantes
História,
11 meses atrás
Artes,
11 meses atrás
Português,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás