Alguem ajuda ai!!
Determinar a e b de modo que o grafico da função definida por f(x)= ax² + bx- 9 tinha o vértre no ponto ( 4,-25)
Por favorrrrr! Ajudem aii! Obrigado :)
Euuuuu:
:)
Soluções para a tarefa
Respondido por
32
Hola.
Xv = -b/2a, como Xv = 4, vem que:
4 = -b/2a
-b = 8a
b = -8a, substituindo esse valor na equação dada, fica:
f(x)= ax² + bx- 9 , como f(x) = y, vem:
-25 = a(4)² + (-8a)*4 - 9
16a - 32a -9 = -25
-16a = -25+9
-16a = -16
a = 16/16
a = 1, substituindo esse valor em: b = -8a, encontramos:
b = -8*(1)
b = -8
Xv = -b/2a, como Xv = 4, vem que:
4 = -b/2a
-b = 8a
b = -8a, substituindo esse valor na equação dada, fica:
f(x)= ax² + bx- 9 , como f(x) = y, vem:
-25 = a(4)² + (-8a)*4 - 9
16a - 32a -9 = -25
-16a = -25+9
-16a = -16
a = 16/16
a = 1, substituindo esse valor em: b = -8a, encontramos:
b = -8*(1)
b = -8
Respondido por
13
x vértice= 4
y vértice = -25 sendo
x vértice= -b/2a tenho que:
-b/2a=4=> -b= 8a(-1) => b=-8a
agora é substituir b na equação f (x) = ax² + bx- 9
-25 = a(4)^2 + (-8a)4 -9
-25 +9 =16a - 32a
-16 = -16a (-1) => 16= 16a => 16/16= a=> 1=a
agora substiui a =1 em b= - 8a
b= -8(1) = > b = -8
logo a = 1 e b= -8
espero ter ajudado
y vértice = -25 sendo
x vértice= -b/2a tenho que:
-b/2a=4=> -b= 8a(-1) => b=-8a
agora é substituir b na equação f (x) = ax² + bx- 9
-25 = a(4)^2 + (-8a)4 -9
-25 +9 =16a - 32a
-16 = -16a (-1) => 16= 16a => 16/16= a=> 1=a
agora substiui a =1 em b= - 8a
b= -8(1) = > b = -8
logo a = 1 e b= -8
espero ter ajudado
Perguntas interessantes
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás