algm me ajuda por favor a resolver essa equaçao maldita???
0,25^{x-4} = 0,5^{-2x+1}[/tex]
Soluções para a tarefa
Respondido por
1
98locs é só você converter os números decimais em frações e depois igualar as bases.
![( \frac{1}{4} )^{x-4}= (\frac{1}{2} )^{-2x+1}\\
\\ (\frac{1}{2^2} )^{x-4}=( \frac{1}{2} )^{-2x+1} ( \frac{1}{4} )^{x-4}= (\frac{1}{2} )^{-2x+1}\\
\\ (\frac{1}{2^2} )^{x-4}=( \frac{1}{2} )^{-2x+1}](https://tex.z-dn.net/?f=%28+%5Cfrac%7B1%7D%7B4%7D+%29%5E%7Bx-4%7D%3D+%28%5Cfrac%7B1%7D%7B2%7D+%29%5E%7B-2x%2B1%7D%5C%5C%0A%5C%5C+%28%5Cfrac%7B1%7D%7B2%5E2%7D+%29%5E%7Bx-4%7D%3D%28+%5Cfrac%7B1%7D%7B2%7D+%29%5E%7B-2x%2B1%7D)
![(2^{-2})^{x-4}= (2^{-1})^{-2x+1}\\
\\\not{2}^{-2x+8}=\not{2}^{2x-1} (2^{-2})^{x-4}= (2^{-1})^{-2x+1}\\
\\\not{2}^{-2x+8}=\not{2}^{2x-1}](https://tex.z-dn.net/?f=%282%5E%7B-2%7D%29%5E%7Bx-4%7D%3D+%282%5E%7B-1%7D%29%5E%7B-2x%2B1%7D%5C%5C%0A%5C%5C%5Cnot%7B2%7D%5E%7B-2x%2B8%7D%3D%5Cnot%7B2%7D%5E%7B2x-1%7D)
![-2x+8=2x-1\\-2x-2x=-1-8~.(-1)\\4x=9 -2x+8=2x-1\\-2x-2x=-1-8~.(-1)\\4x=9](https://tex.z-dn.net/?f=-2x%2B8%3D2x-1%5C%5C-2x-2x%3D-1-8%7E.%28-1%29%5C%5C4x%3D9)
![\boxed{\boxed{x= \frac{9}{4} }}
\boxed{\boxed{x= \frac{9}{4} }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bx%3D+%5Cfrac%7B9%7D%7B4%7D+%7D%7D%0A)
Perguntas interessantes