Matemática, perguntado por carololiveira05, 1 ano atrás

Ajudeem!!   
Logarítimos
  
(A) log5 (5a/bc)  
  (B) log3 (a* b^3/c * raiz cubica de a²)


korvo: entendeu Carol???

Soluções para a tarefa

Respondido por korvo
24
Propriedades:

log _{n}(xy)\to~log _{n}x*log _{n}y~\to~log _{n}x+log _{n}y~~(LOG~DO~PRODUTO)\\\\
log _{n}( \frac{x}{y})\to~log _{n}x/log _{n}y~\to~log _{n}x-log _{n}y~(LOG~DO~QUOCIENTE)\\\\
logx ^{n}~\to~n*log~~(LOG~DA~POTENCIA)\\\\
log _{x}y=n~\to~x ^{n}=y


____________________________________

log _{5}( \frac{5a}{bc})=log _{5} 5a-log _{5}bc\\\\
log _{5}( \frac{5a}{bc})=(log _{5}5*log _{5}a)-log _{5}b*log _{5}c\\\\
log _{5}( \frac{5a}{bc})=(log _{5}5+log _{5}a)-log _{5}b+log _{5}c\\\\
\boxed{log _{5}( \frac{5a}{b})=(1+log _{5}a)-log _{5}b+log _{5}c}

____________________________________

log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })=log _{3}(ab ^{3})-log _{3}c \sqrt[3]{a ^{2} }\\\\
log _{3}( \frac{ab ^{3} }{ c\sqrt[3]{a ^{2} } })=(log _{3}a*log _{3}b ^{3})-log _{3}(c*a ^{ \frac{2}{3} })\\\\
log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })=(log _{3}a+3*log_{3}b)-log _{3}c*log_{3}a ^{ \frac{2}{3} }\\\\
log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })=(log _{3}a+3log _{3}b)-log _{3}c+ \frac{2}{3}*log _{3}a

log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })=(log _{3}a+3log _{3}b)-log _{3}c+ \frac{2}{3}log _{3}a\\\\
log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })= (\frac{2}{3}log _{3}a+log _{3}a+3log _{3}b)-log _{3}c\\\\
\boxed{log _{3}( \frac{ab ^{3} }{c \sqrt[3]{a ^{2} } })=\frac{5}{3}log _{3}a+3log _{3}b-log _{3}c}

Espero ter ajudado e tenha ótimos estudos xD
Perguntas interessantes