AJUDA POR FAVOR!!!
Determine o valor de x em cada caso. As medidas são dadas em centimetro.
Soluções para a tarefa
Resposta:
Usando a fórmula do teorema de Pitágoras
a ^{2} = {b}^{2} + {c}^{2}a
2
=b
2
+c
2
A)
a = x
b = 3
c = 4
x ^{2} = {3}^{2} + {4}^{2}x
2
=3
2
+4
2
x ^{2} = 9+ 16x
2
=9+16
x ^{2} = 25x
2
=25
x = \sqrt{25}x=
25
x = 5 cm
B)
a = x
b = 5
c = 12
x ^{2} = {5}^{2} + {12}^{2}x
2
=5
2
+12
2
x ^{2} = 25 + 144x
2
=25+144
x ^{2} = 169x
2
=169
x = \sqrt{169}x=
169
x = 13 cm
C)
a = 25
b = x
c = 24
25 ^{2} = {x}^{2} + {24}^{2}25
2
=x
2
+24
2
625 = {x}^{2} + {576}625=x
2
+576
{x}^{2} + {576} = 625x
2
+576=625
{x}^{2} = 625 - {576}x
2
=625−576
{x}^{2} = 49x
2
=49
x = \sqrt{49}x=
49
x = 7 cm
D)
a = 17
b = x
c = 15
17 ^{2} = {x}^{2} + {15}^{2}17
2
=x
2
+15
2
289 = {x}^{2} + 225289=x
2
+225
{x}^{2} + 225 = 289x
2
+225=289
{x}^{2} = 289 - 225x
2
=289−225
{x}^{2} = 64x
2
=64
x = \sqrt{64}x=
64
x = 8 cm