Matemática, perguntado por Jhonasz, 9 meses atrás

Ajuda aqui, me explica como determinar o valor de x​

Anexos:

Soluções para a tarefa

Respondido por PhillDays
2

.

\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

☺lá novamente, Jhonas. Vamos a mais um exercício❗ Acompanhe a resolução abaixo. ✌

.

☔ Os exercícios abaixo serão resolvidos com dois conceitos em mente

.

  1. Ângulos complementares: Um conjunto de ângulos é denominado como um ângulo reto caso estejam em um mesmo vértice, sejam vizinhos (sem outros ângulos entre eles) a sua soma resulte em 90º;
  2. Ângulos suplementares: Um conjunto de ângulos é denominado como um ângulo raso caso estejam em um mesmo vértice, sejam vizinhos (sem outros ângulos entre eles) a sua soma resulte em 180º.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Reto.

.

\large\sf\blue{ x + 15 = 90 }

\large\sf\blue{ x = 90 - 15 }

\large\sf\blue{ x = 75 }

.

\Huge\green{\boxed{\rm~~~\red{ A)}~\gray{x}~\pink{=}~\blue{ 75^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Reto.

.

\large\sf\blue{ 2x - 35 + 65 = 90 }

\large\sf\blue{ 2x = 90 - 65 + 35 }

\large\sf\blue{ 2x = 60 }

\large\sf\blue{ x = \dfrac{60}{2} }

\large\sf\blue{ x = 30 }

.

\Huge\green{\boxed{\rm~~~\red{ B)}~\gray{x}~\pink{=}~\blue{ 30^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Reto.

.

\large\sf\blue{ 2x + 10 + x = 90 }

\large\sf\blue{ 3x = 90 - 10 }

\large\sf\blue{ 3x = 80 }

\large\sf\blue{ x = \dfrac{80}{3} }

.

\Huge\green{\boxed{\rm~~~\red{ C)}~\gray{x}~\pink{=}~\blue{ \dfrac{80}{3}^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Reto.

.

\large\sf\blue{ 20 + x + 40 = 90 }

\large\sf\blue{ x = 90 - 60 }

\large\sf\blue{ x = 30 }

.

\Huge\green{\boxed{\rm~~~\red{ D)}~\gray{x}~\pink{=}~\blue{ 30^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Raso.

.

\large\sf\blue{ 5x - 30 + 2x = 180 }

\large\sf\blue{ 7x = 180 + 30 }

\large\sf\blue{ 7x = 210 }

\large\sf\blue{ x = \dfrac{210}{7} }

\large\sf\blue{ x = 30 }

.

\Huge\green{\boxed{\rm~~~\red{ E)}~\gray{x}~\pink{=}~\blue{ 30^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Raso.

.

\large\sf\blue{ x + 16 + 62 + 3x - 22 = 180 }

\large\sf\blue{ 4x = 180 - 56 }

\large\sf\blue{ 4x = 124 }

\large\sf\blue{ x = \dfrac{124}{4} }

\large\sf\blue{ x = 31 }

.

\Huge\green{\boxed{\rm~~~\red{ F)}~\gray{x}~\pink{=}~\blue{ 31^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Raso.

.

\large\sf\blue{ 5x + 24 + x + 36 = 180 }

\large\sf\blue{ 6x = 180 - 60 }

\large\sf\blue{ 6x = 120 }

\large\sf\blue{ x = \dfrac{120}{6} }

\large\sf\blue{ x = 20 }

.

\Huge\green{\boxed{\rm~~~\red{ G)}~\gray{x}~\pink{=}~\blue{20^{\circ}  }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Raso.

.

\large\sf\blue{ x + 135 = 180 }

\large\sf\blue{ x = 180 - 135}

\large\sf\blue{ x = 45}

.

\Huge\green{\boxed{\rm~~~\red{ H)}~\gray{x}~\pink{=}~\blue{ 45^{\circ} }~~~}}

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

☔ Ângulo Reto.

.

\large\sf\blue{ x + x + 9 + 2x + 14 + x + 7 = 180 }

\large\sf\blue{ 3x = 180 - 30}

\large\sf\blue{ 3x = 150}

\large\sf\blue{ x = \dfrac{150}{3}}

\large\sf\blue{ x = 150}

.

\Huge\green{\boxed{\rm~~~\red{ I)}~\gray{x}~\pink{=}~\blue{ 150^{\circ} }~~~}}

.

.

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\bf\Large\blue{Bons\ estudos.}

(\large\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}) ☄

\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

.

.

.

\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}

Anexos:
Perguntas interessantes