Matemática, perguntado por kylieejnnerr, 9 meses atrás

Ache o valor da expressão 2

²+³.log2 ⁵
:​

Anexos:

Soluções para a tarefa

Respondido por vanessacdslima
3

Boa tarde!!

Pela regra dos expoentes: a^{b} .a^{c} = a^{b + c}

Aplicando essa regra na expressão, fica:

2^{2} .2^{3log_{2}5 } = 4.2^{3.log_{2} 5}

Temos a seguinte propriedade da potência do logaritmo:

log_{b} a^{c} = c.log_{b} a

Assim:

4.2^{3.log_{2}5 } = 4.2^{log_{2}5^{3}  }

Quando o logaritmando estiver na potência e as bases forem iguais o resultado será sempre o logaritmando, ou seja:

a^{log_{a} b} = b

Desta forma, fica na expressão:

4.2^{log_{2}5^{3}  } = 4.5^{3}

4.5³ = 4×125 = 500

Espero ter ajudado ;)

Perguntas interessantes