Matemática, perguntado por sangamebr55, 6 meses atrás

Ache a soma dos 43 primeiros termos da PA (8,2...)

Soluções para a tarefa

Respondido por Math739
2

\sf a_n=a_1+(n-1)\cdot\underbrace{\sf a_2-a_1}_{\sf r}

\sf a_{43}=8+(43-1)\cdot(2-8)

\sf a_{43}=8+42\cdot(-6)

\sf a_{43}=8-252

\boxed{\sf a_{43}=-244}

\sf S_n=\dfrac{(a_1+a_n)\cdot n}{2}

\sf S_{43}=\dfrac{(8+(-244))\cdot43}{2}

\sf S_{43}=\dfrac{(8-244)\cdot43}{2}

\sf S_{43}=\dfrac{-236\cdot43}{2}

\sf S_{43}=\dfrac{-10148}{2}

\boxed{\boxed{\sf S_{43}=-5074}}

Respondido por ewerton197775p7gwlb
0

 > resolucao \\  \\  \geqslant progressao \: aritmetica \\  \\ r = a2 - a1 \\ r = 2 - 8 \\ r =  - 6 \\  \\  \\ an = a1 + (n - 1)r \\ an = 8 + (43 - 1) - 6 \\ an = 8 + 42 \times ( - 6) \\ an = 8 + ( - 252) \\ an = 8 - 252 \\ an =  - 244 \\  \\  \\  \geqslant soma \: dos \: termos \: da \: pa \\  \\ sn =  \frac{(a1 + an)n}{2}  \\  \\ sn =  \frac{(8 + ( - 244)43}{2}   \\ \\ sn =  \frac{ - 236 \times 43}{2}  \\  \\ sn =   - 118 \times 43 \\  \\ sn =  - 5074 \\  \\  \\  >  <  >  <  >  <  >  <  >

Anexos:
Perguntas interessantes