a) x2 - 2x + 1 = 0 k) x2 – x – 1 = 0 b) x2 + 4x = 0 l) 5x2 +x + 4 = 0 c) x2 - 3 = 0 m) -2x2 – 8x – 1 = 0 d) x2 - 3x + 2 = 0 n) -6x2 +3x = 0 e) 4x2 - x = 0 o) -5x +x2 – 1 = 0 f) 9x2 - 1 = 0 g) 2x2 + 5x - 6 = 0 h) x2 - 5x + 1 = 0 i) -1 +x2 =0 j) 8x2 = 0
Soluções para a tarefa
Explicação passo-a-passo:
a)
x² - 2x + 1 = 0
(x - 1)² = 0
x - 1 = 0
x' = x" = 1
S = {1}
b)
x² + 4x = 0
x.(x + 4) = 0
• x' = 0
• x + 4 = 0
x" = -4
S = {-4, 0}
c)
x² - 3 = 0
x² = 3
x = ±√3
• x' = √3
• x" = -√3
S = {-√3, √3}
d)
x² - 3x + 2 = 0
x² - x - 2x + 2 = 0
x.(x - 1) - 2.(x - 1) = 0
(x - 1).(x - 2) = 0
• x - 1 = 0
x' = 1
• x - 2 = 0
x" = 2
S = {1, 2}
e)
4x² - x = 0
x.(4x - 1) = 0
• x' = 0
• 4x - 1 = 0
4x = 1
x" = 1/4
S = {0, 1/4}
f)
9x² - 1 = 0
9x² = 1
x² = 1/9
x = ±√1/9
• x' = 1/3
• x" = -1/3
S = {-1/3, 1/3}
g)
2x² + 5x - 6 = 0
Δ = 5² - 4.2.(-6)
Δ = 25 + 48
Δ = 73
x = (-5 ± √73)/2.2
x = (-5 ± √73)/4
• x' = (-5 + √73)/4
• x" = (-5 - √73)/4
S = {(-5 - √73)/4, (-5 + √73)/4}
h)
x² - 5x + 1 = 0
Δ = (-5)² - 4.1.1
Δ = 25 - 4
Δ = 21
x = (5 ± √21)/4
• x' = (5 + √21)/4
• x" = (5 - √21)/4
S = {(5 - √21)/4, (5 + √21)/4}
i)
-1 + x² = 0
x² = 1
x = ±√1
• x' = 1
• x" = -1
S = {-1, 1}
j)
8x² = 0
x² = 0/8
x² = 0
x =±√0
• x' = x" = 0
S = {0}
k)
x² - x - 1 = 0
Δ = (-1)² - 4.1.(-1)
Δ = 1 + 4
Δ = 5
x = (1 ± √5)/2
• x' = (1 + √5)/2
• x" = (1 - √5)/2
S = {(1 - √5)/2, (1 + √5)/2}
l)
5x² + x + 4 = 0
Δ = 1² - 4.5.4
Δ = 1 - 80
Δ = -79
Não há raízes reais
S = { }
m)
-2x² - 8x - 1 = 0
Δ = (-8)² - 4.(-2).(-1)
Δ = 64 - 8
Δ = 56
x = (8 ± √56)/2.(-2)
x = (8 ± 2√14)/(-4)
• x' = (8 + 2√14)/(-4)
x' = (-4 - √14)/2
• x" = (8 - 2√14)/(-4)
x" = (-4 + √14)/2
S = {(-4 - √14)/2, (-4 + √14)/2}
n)
-6x² + 3x = 0
3x.(-2x + 1) = 0
• 3x = 0
x = 0/3
x' = 0
• -2x + 1 = 0
2x = 1
x" = 1/2
S = {0, 1/2}
o)
-5x + x² - 1 = 0
x² - 5x - 1 = 0
Δ = (-5)² - 4.1.(-1)
Δ = 25 + 4
Δ = 29
x = (5 ± √29)/2
• x' = (5 + √29)/2
• x" = (5 - √29)/2
S = {(5 - √29)/2, (5 + √29)/2}