Matemática, perguntado por ber94, 1 ano atrás

a soma dos sete primeiros termos de uma PA é 84. sabendo que a1 = 3, calcule a razão.

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
8
Resolução!


Sn = ( a1 + an ) n / 2

84 = ( 3 + an ) 7 / 2

84 * 2 = 21 + 7an

168 = 21 + 7an

168 - 21 = 7an

147 = 7an

an = 147 / 7

an = 21

_______________________________________


a7 = a1 + 6r

21 = 3 + 6r

21 - 3 = 6r

18 = 6r

r = 18/6

r = 3



PA = { 3 , 6 , 9 , 12 , 15 , 18 , 21 }



espero ter ajudado
Respondido por orielandrade2013
1
s7 = \frac{(a1 + a7).7}{2} \\ 84 = \frac{(3 + a7).7}{2} \\ 7(3 + a7) = 168 \\ 21 + 7a7 = 168 \\ 7a7 = 168 - 21 \\ 7a7 = 147 \\ a7=147/7 \\ a7=21<br />\: \\ para \: encontrar \: o \: valor \: da \: razao \: temos \: que \\ a7 = a1 + 6r \\ 21 = 3 + 6r \\ 6r = 21 - 3 \\ 6r = 18 \\ r = \frac{18}{6} \\ r = 3
Logo a razão da pa São 3
Perguntas interessantes