Matemática, perguntado por luciasbf, 1 ano atrás

A soma das raízes reais distintas da equação || x-2| -2| = 2

Soluções para a tarefa

Respondido por thaynnaba
51

Olá!

Para responder a essa pergunta basta saber alguns conceitos relacionados a função modelo e fazer os cálculos necessários.

A equação modular pode ser tida como aquelas em que os número que estão dentro do módulo não podem ser negativos. Os módulos são essas barrinhas que ficam na lateral do número.

Resolvendo essa questão, vamos ter que:

|| x-2| -2| = 2

| x - 2 + 2| = 2

| x | = 2

Logo, podemos afirmar que o resultado dessa equação modular será igual a 2.

Espero ter ajudado!

Respondido por caiovmelo33
114

Resposta:

Equação modular exigi certo conhecimento algébrico, você deve intender quer se deve aplicar dos valores pro modulo.  

  • l l X - 2 I -2 I = 2
  • I X-2 I -2 = 2  e  I X-2 I -2 = -2  ⇔ A) I X-2 I = 4 e B) I X-2 I = 0
  • Agora temos duas equações e aplicaremos de novo os dois possíveis valores, só que repare, a segunda equação é igual a zero, sendo zero nulo, a equação vai assumir um único valor.
  • A) X-2 = 4 ⇔ X´ = 6  e  X-2 = -4 ⇔ X´´ = -2
  • B) X-2 = 0 ⇔ X´´´ = 2
  • Somando X´+X´´+X´´´ = 6 -2 +2 = 6     Espero der ajudando :)

Explicação passo-a-passo:

Perguntas interessantes