Matemática, perguntado por rghjjj, 1 ano atrás

A solução da equação 4^x+1=2^3-2x é??

Soluções para a tarefa

Respondido por korvo
2
Boa Tarde,


acompanhe passo a passo a resolução, aplicando as propriedades da exponenciação:

\Large\underbrace{\mathsf{4^{x+1}=2^{3-2x}}}\\\\
\mathsf{(2^2)^{x+1}=2^3\cdot2^{-2x}}\\\\
\mathsf{2^{2x+2}=8\cdot \dfrac{1}{2^{2x}} }\\\\
\mathsf{2^{2x}\cdot2^2=\dfrac{8}{2^{2x}} }\\\\
\mathsf{4\cdot2^{2x}= \dfrac{8}{2^{2x}} }\\\\\\ \mathsf{2^{2x}=y}\\\\\\ \mathsf{4\cdot y= \dfrac{8}{y} }\\\\
\mathsf{4y= \dfrac{8}{y} }\\\\
\mathsf{y\cdot 4y=8}\\
\mathsf{4y^2=8}\\\\
\mathsf{y^2= \dfrac{8}{4} }\\\\
\mathsf{y^2=2}\\
\mathsf{y=\pm \sqrt{2} }\\\\\\ \mathsf{2^{2x}=y~~Lembra?}


\mathsf{2^{2x}= \sqrt{2} }}~~~~~~~~~~~~~~~~~~\mathsf{2^{2x}=- \sqrt{2} }~~(\notin\mathbb{R})}\\\\
\mathsf{2^{2x}= 2^{ \tfrac{1}{2} }}\\\\
\mathsf{\not2^{2x}= \not2^{ \tfrac{1}{2} }}\\\\
\mathsf{{2x}=  \dfrac{1}{2} }}\\\\
\mathsf{x= \dfrac{1}{4} }\\\\
\mathsf{Portanto:}\\\\\\
\Large\boxed{\mathsf{S=\left\{ \dfrac{1}{4} \right\}}}

tenha ótimos estudos ;D
Perguntas interessantes