Matemática, perguntado por terezamariana, 1 ano atrás

A parábola da figura é dada por y = x(ao quadrado) + x - 12. Determine a área do triângulo OAB.

Anexos:

terezamariana: segue a ft da qst

Soluções para a tarefa

Respondido por nandaamaral
9
0=x²+x-12
-1±√1+49
----------------
2
-1±7
--------
2
x=3,-4
c=-12
4×12
---------
2
a área vai ser 24

terezamariana: poque a base é 4??
Respondido por williammendes11
7
y = x² + x - 12
a = 1
b = 1
c = -12

Δ = b² - 4ac
Δ = (1)² - 4(1)(-12)
Δ = 1 + 48
Δ = 49

x = -b +- √Δ / 2a
x = -1 +- √49 / 2.1
x = -1 +- 7 /2

x1 = -1 + 7 /2 = 6/2 = 3
x2 = -1 - 7 /2 = -8/2 = -4

O ponto A da figura é o ponto onde a parábola intercepta o eixo y. Esse ponto é o "c" da função quadrática, ou seja, o -12.

O ponto B da figura é a raiz da função de menor valor, ou seja, o - 4.

O ponto O da figura é a origem (0,0).

---------------------------------------------------------------------------------------------------

Área OAB = Base x Altura / 2

A = 4 x 12 / 2 = 48 / 2 = 24 ua (unidades de área)




terezamariana: pq a base é 4??
williammendes11: Porque vai do ponto A (-4) ao O (0), ou seja, uma diferença de 4 metros por exemplo.
williammendes11: A base poderia ser 12 e a altura 4, seria a mesma coisa.
terezamariana: ata ok vlw
Perguntas interessantes