A) Observando os gráfico acima, relacione se o ∆ < 0, ∆ > 0 ou ∆ = 0 em cada caso.
Soluções para a tarefa
Resposta:
O coeficiente a, número real que multiplica x2, pode ser usado para indicar a concavidade da parábola da seguinte maneira:
Se a > 0, a concavidade da parábola é voltada para cima.
Se a < 0, a concavidade da parábola é voltada para baixo.
A melhor maneira de saber o que é a concavidade é observar um exemplo. Na figura a seguir, por exemplo, a concavidade da parábola à esquerda é voltada para cima, e a concavidade da figura à direita é voltada para baixo.

Portanto, na parábola à esquerda, a > 0; e, na parábola à direita, a < 0.
Além disso, o coeficiente a também é responsável pela “abertura” da parábola. Para perceber isso, considere dois pontos A e B, obtidos pela interseção de uma reta paralela ao eixo x e a parábola. Quanto maior o valor do módulo do coeficiente a, menor será a distância entre os pontos A e B, como mostra o exemplo da seguinte imagem:

Coeficiente C
O coeficiente C, em uma função do segundo grau, está relacionado ao ponto de encontro da parábola com o eixo y. Isso acontece porque qualquer ponto de encontro com o eixo y precisa necessariamente ter a coordenada x = 0. Por outro lado, se quisermos saber o ponto de encontro de uma função com o eixo x, a coordenada y é que deverá ser igual a 0.
Fazendo x igual a zero na forma geral das funções do segundo grau, o seguinte resultado será encontrado:
y = ax2 + bx + c
y = a02 + b0 + c
y = c
Assim, o par ordenado em que acontece o encontro entre parábola e o eixo y é: (0, c). Como os cálculos foram feitos para a forma geral das funções do segundo grau, então esse resultado é válido para todas elas.
Na função y = 2x2 – 4x + 1, por exemplo, o ponto de encontro entre o eixo y e a parábola é (0, 1), conforme mostra a imagem a seguir:

Valor do discriminante e do coeficiente A
O discriminante pode ser usado para encontrar as raízes de uma função e, para isso, basta fazer y = 0 e substituir os coeficientes da função na fórmula a seguir:
∆ = b2 – 4ac
É possível também descobrir quantas raízes reais a função possui apenas pelo resultado do discriminante. Para tanto, basta observar que:
Se ∆ > 0, a função possui duas raízes reais e distintas.
Se ∆ = 0, a função possui apenas uma raiz real.
Se ∆ < 0, a função não possui raízes reais.
Dessa forma, podemos descobrir muito sobre a função tendo em mãos apenas esses conhecimentos. Como exemplo, note que, na função y = x2 – 4, o valor de ∆ é maior que zero, pois:
∆ = b2 – 4·a·c
∆ = – 4·1·(– 4)
∆ = 16
Nesse caso, o gráfico da função tocará o eixo x duas vezes.
Observe também que o coeficiente c = – 4. Portanto, o gráfico da função tocará o eixo y no ponto (0, – 4). Além disso, a concavidade da parábola dessa função é voltada para cima, assim, seu gráfico deve apresentar-se como na imagem a seguir:
Dessa maneira, com o conhecimento sobre os coeficientes, não é necessário fazer muitos cálculos para esboçar o seu respectivo gráfico. Assim, para que o esboço acima esteja completo, basta descobrir as raízes da função. Caso o coeficiente b seja diferente de zero, talvez seja necessário descobrir as coordenadas do vértice.