Matemática, perguntado por iaguinho144, 1 ano atrás

A) Log1/3 (x-1) >= log3 4



B)log3 (log2 x) > 0



C) log 1/3 (x^2 - 2x) >= - 1

Soluções para a tarefa

Respondido por ThiagoIME
2
a) log 1/3 (x-1) = -log 3 (x-1) = log 3 [1/(x-1)].
Sabemos que x-1>0 ---> x > 1.

Agora temos: 1/(x-1) >=4 ----> 4x - 4<=1 ----> x <=5/4

Logo, 1 < x <=5/4

b) Sabemos que x > 0 e que log 2 x > 0 ----> x > 1

Efetuando teremos: log 2 x > 1 ----> x > 2.

Fazendo a interseção teremos, x > 2.

c) Pela condição de existência: x² - 2x > 0 ---> x < 0 ou x > 2.
Multiplicando os termos por -1:
-log 1/3 (x²-2x) <=1

log 3 (x²-2x) <= 1

x² - 2x <=3 ----> x² - 2x - 3 <=0
-1<= x <=3

Fazendo a interseção teremos:
-1<= x < 0 U 2 < x <=3
Perguntas interessantes