Matemática, perguntado por adrielsagat, 1 ano atrás

A integral de f(x)= raiz de x (x + 1/x) = é?


Niiya: raiz((x+1)/x) ou raiz(x)*(x+1)/x?
adrielsagat: F(x) = raiz(x)(x+1/x)
Niiya: Depois da raiz é x + (1/x) ou (x + 1)/x??
adrielsagat: f(x)=√x (x+1/x) só está assim o enunciado da questão
Niiya: Hmm... meio ambíguo
Niiya: Vou responder das duas formas
adrielsagat: ok
adrielsagat: http://cm-kls-content.s3.amazonaws.com/201601/IMAGENS_QUESTOES/Calculo_II/img1_20140927084309.jpg
Niiya: Então era x + (1 / x)
Niiya: Vou refazer

Soluções para a tarefa

Respondido por Niiya
3
\displaystyle\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\int\sqrt[2]{x^{1}}(x^{1}+x^{-1})dx\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\int x^{\frac{1}{2}}(x^{1}+x^{-1})dx\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\int(x^{\frac{1}{2}+1}+x^{\frac{1}{2}-1})dx\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\int(x^{\frac{3}{2}}+x^{-\frac{1}{2}})dx\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{x^{\frac{3}{2}+1}}{(\frac{3}{2})+1}+\dfrac{x^{-\frac{1}{2}+1}}{-(\frac{1}{2})+1}+C

\displaystyle\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{x^{\frac{5}{2}}}{(\frac{5}{2})}+\dfrac{x^{\frac{1}{2}}}{(\frac{1}{2})}+C\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{2}{5}x^{\frac{5}{2}}+2x^{\frac{1}{2}}+C\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{2}{5}x^{\frac{1}{2}}\cdot x^{2}+2x^{\frac{1}{2}}+C\\\\\\\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{2}{5}x^{\frac{1}{2}}(x^{2}+5)+C

\boxed{\boxed{\int\sqrt{x}\left(x+\dfrac{1}{x}\right)dx=\dfrac{2}{5}\sqrt{x}(x^{2}+5)+C}}

adrielsagat: era essa reposta mesmo, obrigado
Niiya: Nada! :)
Perguntas interessantes