A função trigonométrica equivalente a
é :
a) senx b)cotgx c) secx d) cossecx e) tgx
Soluções para a tarefa
Respondido por
95
Olá
Alternativa correta, letra e) tgx
![\displaystyle \mathsf{ \frac{secx+senx}{cscx+cosx} }\\\\\\\text{Podemos reescrever 'secx' como } \mathsf{\frac{1}{cosx} }\\\\\text{e podemos reescrever 'cscx' como }\mathsf{ \frac{1}{senx} }\\\\\\ \mathsf{ \frac{ \frac{1}{cosx} +senx}{ \frac{1}{senx} +cosx} }\\\\\\\text{Tira o MMC entre }\mathsf{ \frac{1}{cosx}~ e~ senx }\\\\\\\text{E tambem entre }\mathsf{ \frac{1}{senx} ~e~ cosx }\\\\\\ \mathsf{\frac{ \frac{1+cosx\cdot senx}{cosx} }{ \frac{1+cosx\cdot senx}{senx} } } \displaystyle \mathsf{ \frac{secx+senx}{cscx+cosx} }\\\\\\\text{Podemos reescrever 'secx' como } \mathsf{\frac{1}{cosx} }\\\\\text{e podemos reescrever 'cscx' como }\mathsf{ \frac{1}{senx} }\\\\\\ \mathsf{ \frac{ \frac{1}{cosx} +senx}{ \frac{1}{senx} +cosx} }\\\\\\\text{Tira o MMC entre }\mathsf{ \frac{1}{cosx}~ e~ senx }\\\\\\\text{E tambem entre }\mathsf{ \frac{1}{senx} ~e~ cosx }\\\\\\ \mathsf{\frac{ \frac{1+cosx\cdot senx}{cosx} }{ \frac{1+cosx\cdot senx}{senx} } }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cfrac%7Bsecx%2Bsenx%7D%7Bcscx%2Bcosx%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BPodemos+reescrever+%27secx%27+como+%7D+%5Cmathsf%7B%5Cfrac%7B1%7D%7Bcosx%7D+%7D%5C%5C%5C%5C%5Ctext%7Be+podemos+reescrever+%27cscx%27+como+%7D%5Cmathsf%7B+%5Cfrac%7B1%7D%7Bsenx%7D+%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B+%5Cfrac%7B+%5Cfrac%7B1%7D%7Bcosx%7D+%2Bsenx%7D%7B+%5Cfrac%7B1%7D%7Bsenx%7D+%2Bcosx%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BTira+o+MMC+entre+%7D%5Cmathsf%7B+%5Cfrac%7B1%7D%7Bcosx%7D%7E+e%7E+senx+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BE+tambem+entre+%7D%5Cmathsf%7B+%5Cfrac%7B1%7D%7Bsenx%7D+%7Ee%7E+cosx+%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cfrac%7B+%5Cfrac%7B1%2Bcosx%5Ccdot+senx%7D%7Bcosx%7D+%7D%7B+%5Cfrac%7B1%2Bcosx%5Ccdot+senx%7D%7Bsenx%7D+%7D+%7D)
![\displaystyle\text{Temos uma divisao de fracoes, entao, multiplica a primeira,}\\\text{pelo inverso da segunda}\\\\\\\mathsf{ \frac{1+cosx\cdot senx}{cosx}~\cdot ~ \frac{senx}{1+cosx\cdot senx} }\\\\\\\text{Podemos fazer a simplificacao}\\\\\\\mathsf{ \frac{\diagup\!\!\!\!1+\diagup\!\!\!\!\!\!\!\!cosx\cdot \diagup\!\!\!\!\!\!senx}{cosx}~\cdot ~ \frac{senx}{\diagup\!\!\!\!1+\diagup\!\!\!\!\!\!cosx\cdot\diagup\!\!\!\!\!\! senx} }\\\\\\\mathsf{ \frac{senx}{cosx} } \displaystyle\text{Temos uma divisao de fracoes, entao, multiplica a primeira,}\\\text{pelo inverso da segunda}\\\\\\\mathsf{ \frac{1+cosx\cdot senx}{cosx}~\cdot ~ \frac{senx}{1+cosx\cdot senx} }\\\\\\\text{Podemos fazer a simplificacao}\\\\\\\mathsf{ \frac{\diagup\!\!\!\!1+\diagup\!\!\!\!\!\!\!\!cosx\cdot \diagup\!\!\!\!\!\!senx}{cosx}~\cdot ~ \frac{senx}{\diagup\!\!\!\!1+\diagup\!\!\!\!\!\!cosx\cdot\diagup\!\!\!\!\!\! senx} }\\\\\\\mathsf{ \frac{senx}{cosx} }](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctext%7BTemos+uma+divisao+de+fracoes%2C+entao%2C+multiplica+a+primeira%2C%7D%5C%5C%5Ctext%7Bpelo+inverso+da+segunda%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7B1%2Bcosx%5Ccdot+senx%7D%7Bcosx%7D%7E%5Ccdot+%7E+%5Cfrac%7Bsenx%7D%7B1%2Bcosx%5Ccdot+senx%7D++%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BPodemos+fazer+a+simplificacao%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%211%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21cosx%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21senx%7D%7Bcosx%7D%7E%5Ccdot+%7E+%5Cfrac%7Bsenx%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%211%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21cosx%5Ccdot%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21+senx%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Cfrac%7Bsenx%7D%7Bcosx%7D+%7D)
![\displaystyle \boxed{\mathsf{ \frac{secx+senx}{cscx+cosx}~=~tanx }
}~~~~~ ~~\Longrightarrow \text{Alternativa e)} \displaystyle \boxed{\mathsf{ \frac{secx+senx}{cscx+cosx}~=~tanx }
}~~~~~ ~~\Longrightarrow \text{Alternativa e)}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cboxed%7B%5Cmathsf%7B+%5Cfrac%7Bsecx%2Bsenx%7D%7Bcscx%2Bcosx%7D%7E%3D%7Etanx+%7D%0A%7D%7E%7E%7E%7E%7E+%7E%7E%5CLongrightarrow+%5Ctext%7BAlternativa+e%29%7D)
Alternativa correta, letra e) tgx
Respondido por
3
Ao relacionar com as propriedades trigonométricas, descobrimos que a expressão (secx + senx)/(cscx + cosx) equivale a tgx. (alternativa e).
Para responder o enunciado, temos que entender a relação dos números complexos quando estão relacionados a trigonometria.
Dado a expressão: (secx + senx)/(cscx + cosx)
Sabendo que secx = 1/cosx e cossecx = 1/senx
Substituindo na expressão:
((1/cosx) + senx) / ((1/senx) + cosx)
Agora, vamos descobrir o MMC do 1/cosx e senx como também (1/senx) e cosx:
Temos assim:
((1+cos*senx)/cosx ) / ((1+cosx*senx)/senx)
Simplificando a expressão:
senx/cosx
(secx + senx) / (cscx + cosx) = tanx
Aprenda mais em:
brainly.com.br/tarefa/22693420
Anexos:
![](https://pt-static.z-dn.net/files/d42/64c4c1c73b89d2ac069d6091bd4a0868.jpg)
Perguntas interessantes