Matemática, perguntado por Lindozin20, 9 meses atrás

A função q : R → R é tal que, para qualquer valor real de x, vale q(3 – 2x) = x + 3.
Calcule o valor de q(3) + q(4) – q(5).

Soluções para a tarefa

Respondido por DanJR
1

Resposta:

\boxed{\mathtt{q(3) + q(4) - q(5) = 7/2}}

Explicação passo-a-passo:

\\ \displaystyle \mathsf{q(3 - 2x) = x + 3} \\\\ \mathsf{q(3 - 2x) = x + 3 + (2x - 2x)} \\\\ \mathsf{q(3 - 2x) = (x + 2x) + (3 - 2x)} \\\\ \mathsf{q(3 - 2x) = (3 - 2x) + 3x}

Por conseguinte, considere \displaystyle \mathtt{3 - 2x = \lambda}. Com efeito, \displaystyle \mathtt{x = \frac{3 - \lambda}{2}}. Daí,

\\ \displaystyle \mathsf{q(3 - 2x) = (3 - 2x) + 3x} \\\\ \mathsf{q(\lambda) = \lambda + 3 \cdot \frac{(3 - \lambda)}{2}} \\\\ \mathsf{q(\lambda) = \frac{2\lambda + 9 - 3\lambda}{2}} \\\\ \boxed{\mathsf{q(\lambda) = \frac{9 - \lambda}{2}}}

Por fim, temos:

\\ \displaystyle \mathsf{q(\lambda) = \frac{9 - \lambda}{2} \Rightarrow \begin{cases} \bullet \quad \mathsf{q(3) = \frac{9 - 3}{2} \Rightarrow \boxed{\mathsf{q(3) = 3}}} \\\\ \bullet \quad \mathsf{q(4) = \frac{9 - 4}{2} \Rightarrow \boxed{\mathsf{q(4) = \frac{5}{2}}}} \\\\ \bullet \quad \mathsf{q(5) = \frac{9 - 5}{2} \Rightarrow \boxed{\mathsf{q(5) = 2}}} \end{cases}}

Logo,

\\ \displaystyle \mathsf{q(3) + q(4) - q(5) =} \\\\ \mathsf{3 + \frac{5}{2} - 2 =} \\\\ \mathsf{1 + \frac{5}{2} =} \\\\ \boxed{\boxed{\mathsf{\frac{7}{2}}}}

Perguntas interessantes