A expressão “modelo matemático” possui diversos significados, mas na sua essência é que são representações simplificadas da realidade com o intuito de descrever, analisar ou explorar objetos ou fenômenos. A Física, por exemplo, pode ser caracterizada como uma rede de modelos matemáticos interligados. Com base no contexto acima, proponho a discussão de três tópicos: (a) Segundo Bassanezi (2014: 26), a modelagem matemática de uma situação ou problema real deve seguir uma sequência de etapas. Descreva, em linhas gerais, em qual etapa, na visão desse autor, o modelo matemático é construído. (b) Muitos dos princípios que regem o comportamento físico são relações que envolvem taxas segundo as quais determinados fenômenos acontecem. Em linhas gerais, relações são equações e taxas são descritas pelas derivadas. Temos então as equações diferenciais. Segundo o que foi discutido no item (a), descreva como as equações diferenciais podem ser geradas. (c) As equações diferenciais parciais são equações que envolvem uma função (solução da equação) de mais de uma variável independente e algumas de suas derivadas. Elas sempre aparecem acompanhadas de condições extras sobre a função-solução, que podem ser condições iniciais, de contorno ou ambas. Segundo Bassanezi (2014: 29), após a obtenção do modelo matemático entra-se na fase de sua resolução. A resolução do modelo está vinculada ao grau de complexidade empregado em sua formulação. No caso das equações diferenciais parciais que regem a condução do calor em uma barra e a propagação unidimensional de uma onda em uma corda, qual o método que pode ser empregado para suas soluções? Responda as questões propostas nos itens (a), (b) e (c). Não se esqueça de justificar suas respostas.
Soluções para a tarefa
Resposta:
Explicação passo a passo:
a) Segundo Bassanezi (2014:26) a modelagem matemática está constituída na arte de transformar problemas da realidade em problemas matemáticos e resolvê-los interpretando suas soluções na linguagem do mundo real, sendo assim dividida em cinco (05) etapas.
Experimentação é uma atividade essencialmente laboratorial onde se processa a obtenção de dados; Abstração: É o procedimento que deve levar à formulação dos Modelos Matemáticos. Nesta fase, procura-se estabelecer; Seleção de variáveis a distinção entre as variáveis de estado que descrevem a evolução do sistema e as variáveis de controle que agem sobre o sistema; Problematização ou formulação aos problemas teóricos numa linguagem própria da área em que se está trabalhando; Formulação de hipóteses as hipóteses dirigem a investigação e são comumente formulações gerais que permitem ao pesquisador deduzir manifestações empíricas específicas; Simplificação os fenômenos que se apresentam para o estudo matemático são, em geral, excessivamente complexos se os considerarmos em todos os detalhes, esse método consiste em restringir e isolar o campo de estudo apropriadamente de tal modo que o problema, seja tratável, e ao mesmo tempo, mantém sua relevância; Resolução o modelo matemático é obtido quando se substitui a linguagem natural das hipóteses por uma linguagem matemática coerente, resolução de um modelo está sempre vinculada ao grau de complexidade empregado em sua formulação e muitas vezes só pode ser viabilizada através de métodos computacionais, dando uma solução numérica aproximada; Validação é o processo de aceitação ou não do modelo proposto, neste processo, os modelos e suas hipóteses devem ser testados em confronto com os dados empíricos, comparando suas soluções e previsões com os valores obtidos no sistema real; Modificação alguns fatores ligados ao problema original podem provocar a rejeição ou aceitação dos modelos. Podem haver casos de erros de previsões, hipóteses ou até mesmo de erros nos dados experimentais, por isso esse processo se faz necessário, para justamente prevenirmos de possíveis erros na modelagem.
b) A experimentação pode ser feita de modo a utilizar dentro das condições de trabalho catalogadas e a reprodução de um experimento diversas vezes pode ajudar o desenvolvimento de um modelo matemático através de uma regressão matemática ou extrapolação de dados por exemplo. Um simples problema de M.R.U.V (movimento retilíneo uniformemente variado) pode ser tratado por meio de E.D.O's (Equações diferenciais ordinárias). Mostrado na figura anexada. O método de resolução depende de alguns fatores como a homogeneidade da equação .
c) Para a resolução deste problema, deve-se utilizar a equação de Laplace, onde trata-se de uma equação diferencial de grande relevância, pois analisa vários campos da física como a eletromagnetismo, a mecânica dos fluidos, formulando as funções potencial gravitacional, elétrica, fluídica.