Matemática, perguntado por Nannt, 10 meses atrás

A equação X^2 - 10x + 25 = 0 tem as seguintes soluções no conjunto dos números reais: *
1 ponto
A) somente 5
B) somente 10
C) -5
D) 5 e 10
E) N.d.a

Soluções para a tarefa

Respondido por Jp3108
7

Resposta:

x² -10x + 25 = 0 ⇒ (x-5)² = 0 ⇒ x = 5

Explicação passo-a-passo:

Mano, isso é basicamente uma diferença de quadrados.

(x-a)² = x² - 2.x.a + a²

x² - 10x + 25 = x² - 2.x.a + a²

-10x = -2.x.a ⇒ 5x = x.a

25 = a² ⇒ a = ±5

Agora, temos que descobrir se tanto o +5 quanto o -5, se encaixam na fórmula.

a = +5

5x = 5x ⇒ Verdadeiro

a = -5

5x = -5x ⇒ Falso, somente verdadeiro para x = 0.

Portanto a fórmula é (x-5)² e para zerar isso, x = 5


Nannt: Obgdddd
Perguntas interessantes