A diferença entre as medidas dos raios de duas circunferências é 4cm. O comprimento da menor circunferência é igual a 12 cm. Portanto, o raio da circunferência maior mede
a) 8 cm
b) 10 cm
c) 6 cm
d) 4 cm
e) 2 cm
Soluções para a tarefa
✓Resposta:
Letra B) 10 cm
✓Explicação passo a passo:
(12π cm é o comprimento da circunferência menor, então não interessa para a gente nessa questão)
{C = 2πr} -> fórmula
C = 2 × 3 × r (Nessa questão arredondei o pi para 3)
C = 6r
6 + 4 = 10 cm
O raio da circunferência maior mede 10 cm.
Alternativa B.
Raio da circunferência
Sejam x e y as medidas dos raios dessas duas circunferências, sendo x o da maior e y o da menor.
O comprimento de uma circunferência é dado por:
C = 2·π·r
em que C é o comprimento do arco de ângulo central igual a 360°; r é a medida do raio e π é uma constante (razão entre o perímetro da circunferência e o seu diâmetro).
Como o comprimento da menor circunferência é igual a 12π cm, temos:
12π = 2·π·y
y = 12π
2π
y = 6
A diferença entre as medidas dos raios de duas circunferências é 4 cm. Logo:
x - y = 4
Substituindo o valor de y, temos:
x - 6 = 4
x = 4 + 6
x = 10
Portanto, o raio da circunferência maior tem 10 cm.
Pratique mais sobre comprimento de uma circunferência em:
https://brainly.com.br/tarefa/18591361