Matemática, perguntado por brubssR, 1 ano atrás

A área de um triangulo retângulo é de 6m² o valor do perímetro é:
a) 6m
b) 9m
c) 10m
d) 12m
e) 20m
com o triangulo retângulo com tais valores
Cateto 1: X
Cateto 2 ou b: X+1
hipotenusa: X+2

Soluções para a tarefa

Respondido por agronatics
1
Calculando a área teremos x * (x +1)/2 = 6
x² + x = 12
x² + x - 12 = 0
as raízes dessa equação de segundo grau são 3 e -4, como o cateto não pode ter valor negativo, encontramos que x = 3
perimetro é a soma de todos os lados, sendo assim:
3 + 3 + 1 + 3 + 2 = 12 m
Alternativa D
Espero ter ajudado, bons estudos!

brubssR: Ajudou bastante, obrigada!
Respondido por walterpradosamp
1
CATETO 1   = X
CATETO 2  =  X + 1
HIPOTENUSA = X + 2

A

B                       C

AB = X
BC = X +1
AC = X + 2

6 = (X) . (X+1) / 2           6 = X^2 + X /2

12 - X^2 - X = 0

-X^2 -X + 12 = 0  ----> EQUAÇÃO DO 2° GRAU

A = -1      B = -1      C = 12          Δ = B^2 - 4AC

X = -B + - √Δ / 2A

X' = -4 ----. NÃO SATISFAZ


X'' = 3  ----> SATISFAZ

X = 3
X+1 = 4
X+2 = 5                   PERIMETRO = 3 + 4 + 5 = 12m



Perguntas interessantes