Matemática, perguntado por narutoshuriken, 1 ano atrás

A altura de um prisma reto mede 8cm e sua base é um hexágono regular cuja apótema mede raiz de 3 cm. Nessas condições, determine a área total e o volume desse prisma

Soluções para a tarefa

Respondido por rodrigoreichert
8
Vamos determinar a medida do lado do hexágono a partir da apótema pela seguinte fórmula:

a = l * √3 / 2
√3 = l * √3 / 2
l = 2 cm

Portanto o lado do hexágono mede 2cm.

Vamos calcular a área do hexágono.

(A hexágono) = 3/2 * l² * √3 = 3/2 * 2² * √3 = 6√3 cm²

Vamos calcular a área de uma lateral do prisma, que será dada pelo lado do hexágono multiplicado pela altura.

(A lateral) = 2 * 8 = 16 cm²

A área total será a soma da área dos dois hexágonos (um na base e outro no topo) com a área das 6 laterais do prisma.

A total = 2 * (A hexágono) + 6 * (A lateral) = 2 * (6√3) + 6 * (16) = 12√3 + 96

Portanto a área total do prisma é (96 + 12√3) cm².

O volume do prisma será dado pela área da base (hexágono) multiplicado pela altura do prisma

Volume = (A hexágono) * altura = 6√3 * 8 = 48√3 cm³

Portanto, o volume do prisma é 48√3 cm³.
Perguntas interessantes