Matemática, perguntado por emilylemos5288, 1 ano atrás

9- Uma função f, do 2°grau, admite as raízes -1/3 e 2
e seu gráfico intercepta o eixo y no ponto (0;-4). É
correto afirmar que o valor
a) mínimo de fé -5/6
b) máximo de fé -5/6
c) mínimo de fé -13/3
d) máximo de fé -49/9
e) mínimo de fé -49/6​

Soluções para a tarefa

Respondido por ademirlibanio
1

Resposta:

Questão longa. Vamos aos fatos.

Se o problema deu duas raizes então podemos escrever um produto notável.

(x - 1/3)(x + 2)

Que na forma expandida fica.

x² + 5x/3 -2/3

Note que a expressão quando igualada a zero intercepta o eixo y em -2/3 que não satisfaz o ponto A=(0;-4) dado. Então vamos ter que multiplicar essa equação por um termo k para podermos "esticar" a função no eixo y sem alterar suas raizes.

k(x² + 5x/3 -2/3) = 0k

kx² + 5kx/3 - 2k/3 = 0

Quando x = 0, então y = -4.

k0² + 5k0/3 - 2k/3 = -4

- 2k/3 = -4

-2k = -12

k = 6

Temos o fator de multiplicação da equação que procurávamos, agora vamos a equação do problema:

6(x - 1/3)(x + 2) = 0x6

6x² + 10x - 4 = 0

O mínimo da função está no vértice, logo

V = (-b/2a; -Δ/4a)

Δ = 100 -4(6)(-4)

Δ = 100 + 96

Δ = 196

V = (-10/12; -196/24)

V = (-5/6; -49/6)

a) mínimo de f é -5/6 ⇒ Falso. Esse valor é o x do vértice

b) máximo de f é -5/6 ⇒ Falso. Esse valor é o x do vértice

c) mínimo de f é -13/3 ⇒ Falso. O mínimo é -49/6

d) máximo de f é -49/9 ⇒ Falso. A função não tem máximo no conjunto dos reais.

e) mínimo de f é -49/6 ⇒ Verdadeiro. A função possui um valor mínimo por ser crescente e é -49/6

Resposta E

Explicação passo-a-passo:

Perguntas interessantes