7. Identifique os coeficientes e calcule o discriminante (∆) para cada equação. A) 2x2 − 11x + 5 = 0 B) 2x2 + 4x + 4 = 0 C) 4 − 5x2 = 2x D) x2 − 11x + 28 = 0 E) 4x2 + 2x + 1 = 0 F) 2x2 − 4x − 1 = 0 G) x2 + 8x + 16 = 0
8. Considere a equação abaixo e, faça o que se pede: x2 + 12x − 189 = 0 A) Identifique os coeficientes a, b e c.
B) Calcule o discriminante ∆= b2 − 4ac
C) Determine o valor de x1 e x2
9. Classifique as afirmações em V (verdadeira) ou F (falsa)
I. Se o discriminante da equação é igual a zero, ela tem duas raízes reais e iguais. ( )
II. Se o discriminante da equação é menor que zero, ela tem duas raízes reais diferentes. ( )
III. Se o discriminante da equação é maior que zero, ela tem duas raízes reais e diferentes. ()
IV. Se o discriminante da equação é igual a zero, ela não tem raízes reais. ( )
Soluções para a tarefa
Explicação passo-a-passo:
7. a) a = 2 b = -11 c = 5
b) a = 2 b = 4 c = 4
c) A equação seria -5x2 - 2x + 4 = 0
a = -5 b = -2 c = 4
d) a = 1 b = -11 c = 28
e) a = 4 b = 2 c = 1
f) a = 2 b = -4 c = -1
g) a = 1 b = 8 c = 16
8. a) a = 1 b = 12 c = -189
b)
c)
9. a) V
b) F. Se delta for menor que zero, não é possível calcular, pois a raiz quadrada negativa não existe.
c) V
d) F
Espero ter ajudado!
Desculpe qualquer erro.
Resposta:
Explicação passo-a-passo:
7. a) a = 2 b = -11 c = 5
b) a = 2 b = 4 c = 4
c) A equação seria -5x2 - 2x + 4 = 0
a = -5 b = -2 c = 4
d) a = 1 b = -11 c = 28
e) a = 4 b = 2 c = 1
f) a = 2 b = -4 c = -1
g) a = 1 b = 8 c = 16
8. a) a = 1 b = 12 c = -189
b)
c)
9. a) V
b) F. Se delta for menor que zero, não é possível calcular, pois a raiz quadrada negativa não existe.
c) V
d) F
Espero ter ajudado!