5
Sendo A = a + b - C, B = a - b - c e
C = a - b + c, determine:
a) A - B
b) C - A
c) A - B - C
d) (A + B) - C
e) C - (A + B)
f) B + (A - C)
Soluções para a tarefa
Resposta:
Sendo
A = a + b - c
B = a - b - c
C = a - b + c
a) A - B
( a + b - c ) - ( a - b - c ) =
a + b - c - a + b + c =
a - a + b + b - c + c =
2b
b) C - A
( a - b + c ) - ( a + b - c ) =
a - b + c - a - b - c =
a - a - b - b + c - c =
- 2b
c) A - B - C
( a + b - c ) - ( a - b - c ) - ( a - b + c )=
a + b - c - a + b + c - a + b - c =
a - a - a + b + b + b - c + c - c =
- a + 3b - c =
d) (A + B) - C
( a + b - c ) + ( a - b - c ) - ( a - b + c ) =
a + b - c + a - b - c - a - b - c =
a + a - a + b - b - b - c - c - c =
a - b - 3c
e) C - (A + B)
a - b + c - ( ( a + b - c ) + ( a - b - c ) ) =
a - b + c - ( a + b - c + a - b - c) =
a - b + c - ( a + a + b - b - c - c ) =
a - b + c - ( 2a - 2c ) =
a - b + c - 2a + 2c =
3a - b + 3c
f) B + (A - C)
a - b - c + ( a + b - c - ( a - b + c ) ) =
a - b - c + ( a + b - c - a + b - c ) =
a - b - c + ( a - a + b + b - c - c ) =
a - b - c + ( 2b - 2c ) =
a - b - c + 2b - 2c =
a - b - 3c