5. Se a equação 25^x+ 125 = 6 .5^x+1 admite como solução números reais. Determine esses números.
Soluções para a tarefa
Respondido por
1
25^x + 125 = 6 . 5^x+1
([5]^x)^2+ 125 = 6 . 5^1 . 5^x
([5]^x)^2 + 125 = 6 . 5 . 5^x
([5]^x)^2 + 125 = 30 . 5^x
vamos simplicar o numero cinco f e ficara assim essa operacao :
x^2 + 125 = 30x
X^2 - 30 x + 125 = 0
a = 1 ; b = - 30 ; c = 125
FORMULA DELTA
>>>>>>>>>>>>>>>>
D = b^2 - 4 a c
D = ( - 30 )^2 - 4 (1) (125)
D = 900 - 4 (125)
D = 900 - 500
D = 400
FORMULA DA BRASKARA
>>>>>>>>>>>>>>>>>>>>
X = - b + ; - \/D
......._________
................2a
X = - (-30) + ; - \/400
......._____________
....................2(1)
X = 30 + : - 20
......_________
...............2
X1 = 30 + 20
........______
...............2
X1 = 50
........___
...........2
X1 = 25
((((((((((((((((((((((((((
X2 = 30 - 20
.........______
...............5
X2 = 10
.........__
..........5
X2 = 2
S { 5 ; 25 }
([5]^x)^2+ 125 = 6 . 5^1 . 5^x
([5]^x)^2 + 125 = 6 . 5 . 5^x
([5]^x)^2 + 125 = 30 . 5^x
vamos simplicar o numero cinco f e ficara assim essa operacao :
x^2 + 125 = 30x
X^2 - 30 x + 125 = 0
a = 1 ; b = - 30 ; c = 125
FORMULA DELTA
>>>>>>>>>>>>>>>>
D = b^2 - 4 a c
D = ( - 30 )^2 - 4 (1) (125)
D = 900 - 4 (125)
D = 900 - 500
D = 400
FORMULA DA BRASKARA
>>>>>>>>>>>>>>>>>>>>
X = - b + ; - \/D
......._________
................2a
X = - (-30) + ; - \/400
......._____________
....................2(1)
X = 30 + : - 20
......_________
...............2
X1 = 30 + 20
........______
...............2
X1 = 50
........___
...........2
X1 = 25
((((((((((((((((((((((((((
X2 = 30 - 20
.........______
...............5
X2 = 10
.........__
..........5
X2 = 2
S { 5 ; 25 }
Respondido por
1
Note que
e ![5^{x+1}=5\cdot5^x 5^{x+1}=5\cdot5^x](https://tex.z-dn.net/?f=5%5E%7Bx%2B1%7D%3D5%5Ccdot5%5Ex)
![25^{x}+125=6\cdot5^{x+1} 25^{x}+125=6\cdot5^{x+1}](https://tex.z-dn.net/?f=25%5E%7Bx%7D%2B125%3D6%5Ccdot5%5E%7Bx%2B1%7D)
![(5^x)^2+125=6\cdot5\cdot5^x (5^x)^2+125=6\cdot5\cdot5^x](https://tex.z-dn.net/?f=%285%5Ex%29%5E2%2B125%3D6%5Ccdot5%5Ccdot5%5Ex)
![(5^x)^2+125=30\cdot5^{x} (5^x)^2+125=30\cdot5^{x}](https://tex.z-dn.net/?f=%285%5Ex%29%5E2%2B125%3D30%5Ccdot5%5E%7Bx%7D)
![(5^x)^2-30\cdot5^x+125=0 (5^x)^2-30\cdot5^x+125=0](https://tex.z-dn.net/?f=%285%5Ex%29%5E2-30%5Ccdot5%5Ex%2B125%3D0)
Fazendo
, obtemos:
![y^2-30y+125=0 y^2-30y+125=0](https://tex.z-dn.net/?f=y%5E2-30y%2B125%3D0)
![\Delta=(-30)^2-4\cdot1\cdot125=900-500=400 \Delta=(-30)^2-4\cdot1\cdot125=900-500=400](https://tex.z-dn.net/?f=%5CDelta%3D%28-30%29%5E2-4%5Ccdot1%5Ccdot125%3D900-500%3D400)
![y=\dfrac{-(-30)\pm\sqrt{400}}{2\cdot1}=\dfrac{30\pm20}{2}=15\pm10 y=\dfrac{-(-30)\pm\sqrt{400}}{2\cdot1}=\dfrac{30\pm20}{2}=15\pm10](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B-%28-30%29%5Cpm%5Csqrt%7B400%7D%7D%7B2%5Ccdot1%7D%3D%5Cdfrac%7B30%5Cpm20%7D%7B2%7D%3D15%5Cpm10)
![y'=15+10~\longrightarrow~y=25 y'=15+10~\longrightarrow~y=25](https://tex.z-dn.net/?f=y%27%3D15%2B10%7E%5Clongrightarrow%7Ey%3D25)
![y"=15-10~\longrightarrow~y=5 y"=15-10~\longrightarrow~y=5](https://tex.z-dn.net/?f=y%22%3D15-10%7E%5Clongrightarrow%7Ey%3D5)
Para![y=25~\longrightarrow~5^x=25~\longrightarrow~5^x=5^2~\longrightarrow~\boxed{x=2} y=25~\longrightarrow~5^x=25~\longrightarrow~5^x=5^2~\longrightarrow~\boxed{x=2}](https://tex.z-dn.net/?f=y%3D25%7E%5Clongrightarrow%7E5%5Ex%3D25%7E%5Clongrightarrow%7E5%5Ex%3D5%5E2%7E%5Clongrightarrow%7E%5Cboxed%7Bx%3D2%7D)
Para![y=5~\longrightarrow~5^x=5~\longrightarrow~5^x=5^1~\longrightarrow~\boxed{x=1} y=5~\longrightarrow~5^x=5~\longrightarrow~5^x=5^1~\longrightarrow~\boxed{x=1}](https://tex.z-dn.net/?f=y%3D5%7E%5Clongrightarrow%7E5%5Ex%3D5%7E%5Clongrightarrow%7E5%5Ex%3D5%5E1%7E%5Clongrightarrow%7E%5Cboxed%7Bx%3D1%7D)
Fazendo
Para
Para
Perguntas interessantes
Saúde,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás