Matemática, perguntado por pradriano78, 11 meses atrás

5) Resolver a equação diferencial homogênea 2y - xy' =0

Soluções para a tarefa

Respondido por DanJR
2

Explicação passo-a-passo:

\\ \displaystyle \mathsf{2y - xy' = 0} \\\\ \mathsf{x \ \frac{dy}{dx} = 2y} \\\\ \mathsf{\frac{1}{y} dy = \frac{2}{x} dx} \\\\ \mathsf{\int \frac{1}{y} dy = \int \frac{2}{x} dx} \\\\ \mathsf{\ln |y| = 2 \cdot \ln |x| + c} \\\\ \mathsf{\ln |y| - \ln x^2 = c} \\\\ \mathsf{\ln \frac{|y|}{x^2} = c} \\\\ \mathsf{e^c = \frac{y}{x^2}} \\\\ \mathsf{y = e^c \cdot x^2} \\\\ \boxed{\boxed{\mathsf{y = Cx^2}}}

Respondido por CyberKirito
1

 2y - xy' =0\\xy'=2y

x\frac{dy}{dx}=2y \\\frac{dy}{y}=2\frac{dx}{x}

\int\frac{dy}{y}=2\int\frac{dx}{x}

 ln|y|=2ln|x|+c

 {e}^{ln(y)}={e}^{2ln(x) +c}

{e}^{ln(y)} ={e}^{2ln(x)}.{e}^{c}

\boxed{\boxed{y=k{x}^{2}}}

Perguntas interessantes