Matemática, perguntado por clebersilvasp, 1 ano atrás

5- Em um escritório, o tempo por dia (em minutos), no horário de trabalho, que a Internet na área que João trabalha fica fora do ar em virtude de uma falha da prestadora de serviços, está apresentado na distribuição seguir.

 Tempo parado em minutos  0 – 10   10 – 20    20 – 30   30 -- 40  40 – 50  total
                                             Fi 2             15            17           13            3       50

a) Calcule a média, moda e mediana;
b) Calcule o Q3, D3, P63

Soluções para a tarefa

Respondido por Usuário anônimo
16
Boa tarde Cleber!

Solução!

Para resolver esse exercicio é importante saber o que é limite inferior e superior,classes,amplitude.

Classe~~~~~~~~~~~Minutos~~~~~~~~~fi~~~~Xi~~~~~~~fi.Xi~~~~~~Fi\\
-------------------------------\\\
~~~1~~~~~~~~~~~~~~~~~~[0,10[~~~~~~~~~~~~~2~~~~~5~~~~~~~~~~~10~~~~~~~~~2~\\\\\\
~~~2~~~~~~~~~~~~~~~~~~[10,20[~~~~~~~~~~~~15~~~~15~~~~~~~~~225~~~~~~~~17\\\\\\
~~~3~~~~~~~~~~~~~~~~~~[20,30[~~~~~~~~~~~~17~~~~25~~~~~~~~~425~~~~~~~~34\\\\\\
~~~4~~~~~~~~~~~~~~~~~~[30,40[~~~~~~~~~~~~13~~~~35~~~~~~~~~455~~~~~~~~47\\\\\\
~~~~~5~~~~~~~~~~~~~~~~~~
[40,50[~~~~~~~~~~~~~3~~~~45~~~~~~~~~135~\\\\
~~~~~~~~

~~~~~~~~50\\\\\\
\underline{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~50~~~~~~~~~~~~~~~~1250}



Media!\\\\\\
\overline{X}=\dfrac{\sum~fi.xi}{n}\\\\\\\
\overline{X}=\dfrac{1250}{50}\\\\\\\
\boxed{\overline{X}=25}




Moda!\\\\\

Moda=li+(\dfrac{D1}{D1+D2)}).h\\\\\\\\\
D1=fi-Fi(ant)\\\\\\\\
D2=fi-Fant(post)\\\\\\\\\\

D1=17-15\\\\\
\boxed{D1=2}\\\\\\
D2=17-13$\\\\\
\boxed{D2=4}\\\\\\\\
Moda=20+(\dfrac{2}{6}).10\\\\\\\
Moda=20+(\dfrac{20}{6})\\\\\\\
Moda=20+3,3\\\\\\\
\boxed{Moda=23,3}




Mediana=\dfrac{li+(\dfrac{n}{2}-Fi(ant).h}{fi}\\\\\\
Posica\~o=\dfrac{50+1}{2}=25,5\\\\\\
Mediana=20+\dfrac{(\dfrac{50}{2}-17).10}{17}\\\\\\
Mediana=20+\dfrac{(25-17).10}{17}\\\\\\
Mediana=20+\dfrac{(8).10}{17}\\\\\\
Mediana=20+\dfrac{(80)}{17}\\\\\\
Mediana=20+4,705\\\\\\
\boxed{Mediana=24,70}


Medidas separatrizes!


Quartis: Divide a amostra em 4 partes.


Decis:Divide a amostra em 10 partes.


Percentis: Divide a amostra em 100 partes.


Vamos usar essa formula para calcular todas!


Q=li+ \dfrac{[ \frac{\sum fi}{n}-Fi(ant)].h }{fi}



Q_{3}=li+ \dfrac{[ \frac{\sum fi}{4}-Fi(ant)].h }{fi}\\\\\\\\\
Posica\~o=3. \dfrac{50}{4}=37,5\\\\\\
Q_{3}=30+ \dfrac{[37,5-34].10 }{13}\\\\\\\\\
Q_{3}=30+ \dfrac{[3,5].10 }{13}\\\\\\\\\ 
Q_{3}=30+ \dfrac{35 }{13}\\\\\\\\\  
Q_{3}=30+ 2,69\\\\\\\\\  
\boxed{Q_{3}=32,69}




D=li+ \dfrac{[ \frac{\sum fi}{n}-Fi(ant)].h }{fi}\\\\\\\\
D_{3} =li+ \dfrac{[ \frac{\sum fi}{10}-Fi(ant)].h }{fi}\\\\\\
Posic\~ao=3. \dfrac{50}{10}=15\\\\\\\
D_{3} =10+ \dfrac{[15-2].10 }{15}\\\\\\
D_{3} =10+ \dfrac{[13].10 }{15}\\\\\\
D_{3} =10+ \dfrac{130 }{15}\\\\\\ 
D_{3} =10+ 8,6\\\\\\ 
\boxed{D_{3} =18,6}\\\\\\



P=li+ \dfrac{[ \frac{\sum fi}{n}-Fi(ant)].h }{fi}\\\\\\
P_{63} =li+ \dfrac{[ \frac{\sum fi}{100}-Fi(ant)].h }{fi}\\\\\\
Posic\~ao=63. \dfrac{50}{100}=31,5\\\\\\
P_{63} =20+ \dfrac{[ 31,5-17].10 }{17}\\\\\\
P_{63} =20+ \dfrac{[ 14,5].10 }{17}\\\\\\
P_{63} =20+ \dfrac{145}{17}\\\\\\
P_{63} =20+ \dfrac{145}{17}\\\\\\
P_{63} =20+ 8,52\\\\\\
\boxed{P_{63} =28,52}



Boa tarde!
Bons estudos!



Anexos:

Usuário anônimo: Qualquer dúvida manda uma mensagem,a tabela não esta legal.
Usuário anônimo: Vou colocar um anexo da tabela!
Perguntas interessantes